TABLE OF CONTENTS

Preface xvii
About the Authors xxvii

1 Communication Networks and Services 1
1.1 Evolution of Network Architecture and Services 2
1.1.1 Telegraph Networks and Message Switching 2

1.1.2 Telephone Networks and Circuit Switching 5

1.1.3 The Internet, Computer Networks, and Packet Switching 9

1.2 Future Network Architectures and Their Services 22
1.3 Key Factors in Communication Network Evolution 24
1.3.1 Role of Technology 25

1.3.2 Role of Regulation 27

1.3.3 Role of the Market 28

1.3.4 Role of Standards 28
Checklist of Important Terms 29
Further Reading 30
Problems 31

2 Applications and Layered Architectures 34
2.1 Examples of Protocols, Services, and Layering 36
2.1.1 HTTP, DNS, and SMTP 36

2.1.2 TCP and UDP Transport Layer Services 42

2.2 The OSI Reference Model 43
2.2.1 The Seven-Layer OSI Reference Model 44

2.2.2 Unified View of Layers, Protocols, and Services 48

2.3 Overview of TCP/IP Architecture 52
2.3.1 TCP/IP Architecture ' 52

2.3.2 TCP/IP Protocol: How the Layers Work Together 55

2.3.3 Protocol Overview 61

¢2.4 The Berkeley API 62
-2.4.1 Socket System Calls 64

2.4.2 Network Utility Functions 68

+2.5 Application Layer Protocols and TCP/IP Utilities 77
2.5.1 Telnet 78

2.5.2 File Transfer Protocol 78

2.5.3 Hypertext Transfer Protocol and the World Wide Web 82

2.5.4 IP Utilities 86

2.5.5 Tcpdump and Network Protocol Analyzers 89
Summary 90
Checklist of Important Terms 91
Further Reading : 91

Problems 92

vil

viii

Table of Contents

3 Digital Transmission Fundamentals

31

3.2

33

34

35

3.6
3.7

38

39

Digital Representation of Information

3.1.1 Block-Oriented Information

3.1.2 Stream Information

Why Digital Communications?

3.2.1 Comparison of Analog and Digital Transmission

3.2.2 Basic Properties of Digital Transmission Systems

Digital Representation of Analog Signals

3.3.1 Bandwidth of Analog Signals

3.3.2 Sampling of an Analog Signal

3.3.3 Digital Transmission of Analog Signals
¢ 3.3.4 SNR Performance of Quantizers

Characterization of Communication Channels

3.4.1 Frequency Domain Characterization

3.4.2 Time Domain Characterization

Fundamental Limits in Digital Transmission

3.5.1 The Nyquist Signaling Rate

3.5.2 The Shannon Channel Capacity

Line Coding

Modems and Digital Modulation

3.7.1 Binary Phase Modulation

3.7.2 QAM and Signal Constellations

3.7.3 Telephone Modem Standards

Properties of Media and Digital Transmission Systems

3.8.1 Twisted Pair

3.8.2 Coaxial Cable

3.8.3 Optical Fiber

3.8.4 Radio Transmission

3.8.5 Infrared Light

Error Detection and Correction

3.9.1 Error Detection

3.9.2 Two-Dimensional Parity Checks

3.9.3 Internet Checksum

3.9.4 Polynomial Codes

3.9.5 Standardized Polynomial Codes

3.9.6 Error-Detecting Capability of a Polynomial Cod
€397 Linear Codes ' -
€3.9.8 Error Correction

Summary

Checklist of Important Terms

Further Reading

Problems

Appendix 3A: Asynchronous Data Transmission

Appendix 3B: Fourier Series

Appendix 3C: Sampling Theorem

92
100
101
103
107
107
110
114
115
118
119
123
124
124
128
130
130
132
135
138
140
141
144
146
148
152
156
162
166
166
167
171
172
173
177
178
180
186
190
191
192
192
201
203
204

Table of Contents ix

4 Circuit-Switching Networks 206
4.1 Multiplexing 207
4.1.1 Frequency-Division Multiplexing 208

4.1.2 Time-Division Multiplexing 209

4.1.3 Wavelength-Division Multiplexing 212

4.2 SONET 213
4.2.1 SONET Multiplexing 214

4.2.2 SONET Frame Structure 216

4.3 Transport Networks 221
4.3.1 SONET Networks 222

4.3.2 Optical Transport Networks 231

4.4 Circuit Switches 234
4.4.1 Space-Division Switches 235

4.4.2 Time-Division Switches 238

4.5 The Telephone Network 242
4.5.1 Transmission Facilities 245

4.5.2 End-to-End Digital Services 248

4.6 Signaling 250
4.6.1 Signaling in the Telephone Network 250

4.6.2 Signaling System #7 Architecture 253

4.7 Traffic and Overload Control in Telephone

Networks 255

4.7.1 Concentration 256

4.7.2 Routing Control 259

4.7.3 Overload Controls 261

4.8 Cellular Telephone Networks 263
Summary 270
Checklist of Important Terms 270
Further Reading 271
Problems 272

5 Peer-to-Peer Protocols and Data Link Layer 282
PartI: Peer-to-Peer Protocols , 283
5.1 Peer-to-Peer Protocols and Service Models 284
5.1.1 Service Models 284

5.1.2 Examples of Services 286

5.1.3 End to End versus Hop by Hop 288

5.2 ARQ Protocols and Reliable Data Transfer Service 291
5.2.1 Stop-and-Wait ARQ 293

5.2.2 Go-Back-N ARQ 300

5.2.3 Selective Repeat ARQ 309

5.3 Other Peer-to-Peer Protocols 315
5.3.1 Sliding-Window Flow Control 315

5.3.2 Timing Recovery for Synchronous Services 317

5.3.3 TCP Reliable Stream Service and Flow Control 320

x Table of Contents

Part
5.4
5.5
5.6

¢ 5.7

II: Data Link Controls

Framing

Point-to-Point Protocol

HDLC Data Link Control

5.6.1 Data Link Services

5.6.2 HDLC Configurations and Transfer Modes

5.6.3 HDLC Frame Format

5.6.4 Typical Frame Exchanges

Link Sharing Using Packet Multiplexers

5.7.1 Statistical Multiplexing

5.7.2 Speech Interpolation and the Multiplexing
of Packetized Speech

Summary

Checklist of Important Terms

Further Reading

Problems

Appendix 5A: Derivation of Efficiency of ARQ Protocols

6 Medium Access Control Protocols and Local
Area Networks ‘

Part
6.1
6.2

6.3

+6.4

¢6.5

I: Medium Access Control Protocols

Multiple Access Communications

Random Access

6.2.1 ALOHA

6.2.2 Slotted ALOHA

6.2.3 Carrier Sense Multiple Access

6.2.4 Carrier Sense Multiple Access with Collision Detection

Scheduling Approaches to Medium Access Control

6.3.1 Reservation Systems

6.3.2 Polling

6.3.3 Token-Passing Rings

6.3.4 Comparison of Scheduling Approaches in Medium
Access Control

6.3.5 Comparison of Random Access and Scheduling
Medium Access Controls

Channelization

6.4.1 FDMA

6.4.2 TDMA

6.4.3 CDMA

6.4.4 Channelization in Telephone Cellular Networks

Delay Performance of MAC and Channelization Schemes

6.5.1 Performance of Channelization Techniques
with Bursty Traffic

6.5.2 Performance of Polling and Token Ring Systems

6.5.3 Random Access and CSMA-CD

324
325
329
333
333
335
335
337
340
340

348
352
353
354
354
365

368
370
370
377
378
380
381
384
387
388
390
393

396

397
398
399
400
401
408
415

416
418
421

Table of Contents xi

Part II: Local Area Networks 421
6.6 LAN Protocols 421
6.6.1 LAN Structure 422

6.6.2 The Medium Access Control Sublayer 423

6.6.3 The Logical Link Control Sublayer 425

6.7 Ethernet and IEEE 802.3 LAN Standard 427
6.7.1 Ethernet Protocol 427

6.7.2 Frame Structure 429

6.7.3 Physical Layers 431

6.7.4 Fast Ethernet . 434

6.7.5 Gigabit Ethernet 435

6.7.6 10 Gigabit Ethernet 436

6.8 Token-Ring and IEEE 802.5 LAN Standard 438
6.8.1 Token-Ring Protocol 439

6.8.2 Frame Structure 442

6.9 FDDI 444
6.10 Wireless LANs and IEEE 802.11 Standard 446
6.10.1 Ad hoc and Infrastructure Networks 449

6.10.2 Frame Structure and Addressing 451

6.10.3 Medium Access Control 453
¢6.10.4 Physical Layers 459

6.11 LAN Bridges and Ethernet Switches 465
6.11.1 Transparent Bridges 468

6.11.2 Source Routing Bridges 474

6.11.3 Mixed-Media Bridges 477

6.11.4 Virtual LANs 477
Summary 479
Checklist of Important Terms 480
Further Reading 481
Problems 482
Packet-Switching Networks 490
7.1 Network Services and Internal Network Operation 492
7.2 Packet Network Topology 496
7.3 Datagrams and Virtual Circuits 501
7.3.1 Connectionless Packet Switching 502

7.3.2 Virtual-Circuit Packet Switching 507

7.3.3 Structure of a Packet Switch 511

7.4 Routing in Packet Networks 515
7.4.1 Routing Algorithm Classification 516

7.4.2 Routing Tables 517

7.4.3 Hierarchical Routing 518

7.4.4 Specialized Routing 520

xii

Table of Contents

1.5

7.6
7.7

(78

7.9

Shortest-Path Routing

7.5.1 The Bellman-Ford Algorithm

7.5.2 Dijkstra’s Algorithm

7.5.3 Source Routing versus Hop-by-Hop Routing

7.5.4 Link-State Routing versus Distance-Vector Routing
ATM Networks

Traffic Management at the Packet Level

7.7.1 FIFO and Priority Queues

7.7.2 Fair Queueing

7.7.3 Weighted Fair Queueing

7.7.4 Random Early Detection

Traffic Management at the Flow Level

7.8.1 Open-Loop Control

7.8.2 Closed-Loop Control

Traffic Management at the Flow-Aggregate Level
Summary

Checklist of Important Terms

Further Reading

Problems

8 TCP/IP :

8.1
8.2

8.3

8.4
8.5

The TCP/IP Architectu

The Internet Protocol

8.2.1 IP Packet

8.2.2 [P Addressing

8.2.3 Subnet Addressing

8.2.4 IP Routing

8.2.5 Classless Interdomain Routing (CIDR)
8.2.6 Address Resolution

8.2.7 Reverse Address Resolution

8.2.8 Fragmentation and Reassembly
8.2.9 ' ICMP: Error and Control Messages
IPv6

8.3.1 Header Format

8.3.2 Network Addressing

8.3.3 Extension Headers

8.3.4 Migration Issues from IPv4 to IPv6
User Datagram Protocol
Transmission Control Protocol

8.5.1 TCP Operation and Reliable Stream Service
8.5.2 TCP Protocol

8.5.3 TCP Congestion Control

522
523
530
532
533
534
539
540
542
545
548
549
550
558
560
561
562
562
563

572
573
576
576
579
581
583
584
585
587
587
589
592
593
594
597
599)
601
602
602
605
617

Table of Contents xiii

8.6 Internet Routing Protocols 620
8.6.1 Routing Information Protocol 621
8.6.2 Open Shortest Path First 622
8.6.3 Border Gateway Protocol 631
8.7 Multicast Routing 640
8.7.1 Reverse-Path Broadcasting 641
8.7.2 Internet Group Management Protocol 643
8.7.3 Reverse-Path Multicasting 644
8.7.4 Distance-Vector Multicast Routing Protocol 646
8.8 DHCP, NAT, and Mobile IP 646
8.8.1 Dynamic Host Configuration Protocol 646
8.8.2 Network Address Translation 647
8.8.3 Mobile IP 647
Summary 650
Checklist of Important Terms 650
Further Reading 651
Problems 652
9 ATM Networks 660
9.1 Why ATM? 661
9.2 BISDN Reference Model 662
9.3 ATM Layer 665
9.3.1 ATM Cell Header 666
9.3.2 Virtual Connections 668
9.3.3 QoS Parameters 668
9.3.4 Traffic Descriptors 670
9.3.5 ATM Service Categories 671

9.3.6 Traffic Contracts, Connection Admission Control,
and Traffic Management 673
9.4 ATM Adaptation Layer 674
9.4.1 AALI 675
94.2 AAL2 678
9.4.3 AAL3/4 680
9.44 AALS 683
9.4.5 Signaling AAL 684
9.4.6 Applications, AALs, and ATM Service Categories 686
9.5 ATM Signaling 688
9.5.1 ATM Addressing 688
9.5.2 UNI Signaling 690
9.5.3 PNNI Signaling 693
9.6 PNNI Routing 694
9.7 Classical IP Over ATM 697
Summary 699
Checklist of Important Terms 699
Further Reading 699

Problems 700

xiv Table of Contents

10 Advanced Network Architectures

10.1

10.2

10.3

104

10.5

10.6

10.7

Integrated Services in the Internet
10.1.1 Guaranteed Service

10.1.2 Controlled-Load Service

RSVP

10.2.1 Receiver-Initiated Reservation
10.2.2 Reservation Merging

10.2.3 Reservation Styles

10.2.4 Soft State

10.2.5 RSVP Message Format
Differentiated Services

10.3.1 DS Field

10.3.2 Per-Hop Behaviors

10.3.3 Traffic Conditioner

10.3.4 Bandwidth Broker

Network Interconnection Models
10.4.1 Overlay Model

10.4.2 Peer-to-Peer Model

MPLS

10.5.1 Fundamentals of Labels

10.5.2 Label Stack and LSP Hierarchy
10.5.3 VC Merging

10.5.4 Label Distribution Protocols
10.5.5 MPLS Support for Virtual Networks
10.5.6 Survivability

10.5.7 GMPLS '

Real-Time Transport Protocol
10.6.1 RTP Scenarios and Terminology
10.6.2 RTP Packet Format

10.6.3 RTP Control Protocol (RTCP)
Session Control Protocols

10.7.1 Session Initiation Protocol
10.7.2 H.323 Multimedia Communication Systems
10.7.3 Media Gateway Control Protocols
Summary

Checklist of Important Terms
Further Reading :
Problems

11 Segurity Protocols

. M1

11.2

Security and Cryptographic Algorithms
11.1.1 Applications of Cryptography to Security
11.1.2 Key Distribution

Security Protocols

11.2.1 Application Scenarios

11.2.2 Types of Security Service

705
706

107

708
708
710
711
712
714
715
717
718
719
720
721
722
723
725
727
729
730
732
732
735
736
738
740
741
743
745
747
747
751
753
755
756
756
757

763
763
765
770
773
773
775

12

Table of Contents

11.2.3 Setting Up a Security Association

11.2.4 IPSec

11.2.5 Secure Sockets Layer and Transport Layer Security

11.2.6 802.11 and Wired Equivalent Privacy
11.3 Cryptographic Algorithms

11.3.1 DES

11.3.2 RSA

Summary

Checklist of Important Terms

Further Reading

Problems

Multimedia Information
12.1 Lossless Data Compression
12.1.1 Huffman Codes
12.1.2 Run-Length Codes
12.1.3 Adaptive Data Compression Codes
12.2 Compression of Analog Signals
12.2.1 Adaptive Quantizers
12.2.2 Predictive Coding
12.2.3 Transform and Subband Coding
12.3 Image and Video Coding
12.3.1 Discrete Cosine Transform Coding
12.3.2 The JPEG Image-Coding Standard
12.3.3 Compression of Video Signals
12.3.4 The MPEG Video-Coding Standards
12.3.5 MPEG Multiplexing
Summary
Checklist of Important Terms
Further Reading
Problems

Epilogue

Appendices
Delay and Loss Performance
A. 1 Delay Analysis and Little’s Formula
A.1.1 Arrival Rates and Traffic Load Definitions
A.1.2 Litle’s Formula
A.2 Basic Queueing Models
A.2.1 Arrival Processes
A.2.2 Service Times
A.2.3 Queueing System Classification

Xv

778
780
782
788
790
790
793
794
795
796
797

800
801
801
805
810
812
812
813
818
819
819
820
823
826
828
830
830
830
831

837

840
840
841
842
845
846
846
847

Xvi

Table of Contents

A3 M/M/1: A Basic Multiplexer Model

A.3.1 M/M/I Steady State Probabilities and the Notion

of Stability

A.3.2 Effect of Scale on Performance

A.3.3 Average Packet Delay in a Network
A4 The M/G/1 Model

A.4.1 Service Time Variability and Delay

A.4.2 Priority Queueing Systems

A4.3 Vacation Models and Multiplexer Performance
A.5 Erlang B Formula: M/M/c/c System

Further Reading

B Network Management
B.1 Network Management Overview
B.2 Simple Network Management Protocol (SNMP)
B.3 Structure of Management Information
B.4 Management Information Base
B.5 Remote Network Monitoring
Further Reading

Index

849

850
853
854
854
855
856
857
857
859

860
861
863
865
867
868
869

871

PREFACE

SR S L T SEE g ¢ . e g

OBJECTIVE

Communication networks are in a period of transition from networks that are based on
telephone architecture and standards to networks based on the Internet Protocol (IP)
architecture. The main reason for this change is that new services and applications can
be deployed with unprecedented speed over an Internet that has attained the global
reach of the telephone network. Many of these new applications and services are quite
visible to the student. For example, in addition to e-mail and web surfing, there is
buying/selling over the Internet (eBay), MP3 and other file exchanges (Napster, KaZaA),
interactive games (Counterstrike), video streaming (CNN), and voice-over-IP (Net-
Meeting, ICQ). Many other applications and services are having profound impact on
business, manufacturing, international commerce, medicine, and government.

The infrastructure of communication networks is undergoing dramatic change
under pressure from the new services and enabled by technology innovation. A new
generation of wireless devices combines aspects of cellular phones, personal digital
assistants, and even digital cameras and is enabling new modes of mobile communica-
tion such as short text messaging, event notification, e-mail, and web browsing. These
wireless services are blazing a trail away from traditional telephony to new modes of
IP-based multimedia communications. Inevitably the signaling system that enables all
of the functionality of the cellular and telephone network will be replaced by more
versatile signaling based on Internet protocols. A new generation of IP-based protocols
will control and manage the resources in the next generation of networks.

Itis in this exciting context of new services and emerging next-generation network
architecture that we offer this second edition of our textbook. The purpose of this book
is to provide an introduction to fundamental network architecture concepts and their
application in existing and emerging networks. We emphasize the pivotal role of Internet
protocols in future network architecture and at the same time provide a broad coverage
of fundamental network concepts. Our view is that the student will be best prepared for
a future of constant change through exposure to network design alternatives.

TARGET COURSES

The book is designed for introductory courses in computer networks and in communi-
cation networks at the upper-level undergraduate and first-year graduate programs in
electrical engineering, computer engineering, and computer science. The book contains
all the basic material covered in typical onc-semester first courses in computer networks
and in communication networks. The book also provides additional material in each
chapter as well as advanced topics in the later chapters so that the book can be used
in a two-semester course sequence. The book is up-to-date in its coverage of emerging
network architecture and can also be used by engineering and computer professionals.

XVii

xviii Preface

As prerequisites the book assumes a general knowledge of computer systems. In
certain optional parts of the text, knowledge of programming, elementary probability,
or elementary calculus is required. These sections are clearly indicated and can be
skipped.

APPROACH AND CONTENT

The book is organized into three parts. In Part I we trace the evolution of networks and
identify the key concepts and functions that form the basis for layered architectures. We
introduce examples of services and applications that are familiar to the student (web
browsing, e-mail, and telephone), and we explain how these services are supported by
networks. This big picture view of networks helps the student to see how the various
parts of a network architecture fit intc one whole.

Part I. The big picture of networks (Chapters 1-2):

* Evolution of network concepts in telegraph, telephone, and computer networks

* How services and applications drive network architecture evolution

* How layers work together to deliver services

* Application layer, transport layer, and sockets

* Preparation for experimentation: network protocol analyzer, IP utilities, and socket
programming

- The second part presents fundamental concepts of network architecture and fo-
cuses on the lower four layers of the protocol stack. Our approach is to develop the
fundamental concepts first and then to show their application in concrete examples. For
example, we develop ARQ in detail as an example of a peer-to-peer protocol and then
we discuss its application in TCP reliable stream service and flow control. We cover
the essential computer network topics, but we also have extensive discussion of access
and transport networks, telephone and cellular services and signaling. This additional
material is organized so that it is optional, but we include it because we believe that
much of network architecture evolution in the near future will involve the extension of
Internet protocols to traditional networks and services.

Part II. Fundamental concepts in network architecture (Chapters 3-7):
* Digital transmission; copper, cable, radio, and optical media

* SONET and optical networking

* Circuit switching, signaling, telephone services, mobility

* Peer-to-peer protocol design; PPP, HDLC, POS, and GFP

* Medium-access control; Ethernet and 802.11 wireless LANs

* Voice and data cellular networks

* Packet switching, routing, congestion control, and QoS

The third and final part deals with key network architectures, advanced topics, and
next generation networks. We present the protocols and standards that are likely to
shape the next generation networks.

Preface xix

Part III. Key architectures, advanced topics, and next generation networks

(Chapters 8-12 and Appendices):
* IPv4 and IPv6; TCP, UDP; RIP, OSPF, BGP; DHCP and mobile IP

* ATM networks

* New Architectures: IntServ, RSVP, DiffServ, Peer vs. Overlay Interconnection, MPLS
and GMPLS, RTP, SIP, and H.323

» Network Security: DES and AES, RSA, IPSec, SSL and TLS, 802.11

¢ Multimedia standards: JPEG, MPEG, Audio, MP3, voice-over-1P

* Network management and performance modeling

The book attempts to provide a balanced view of all important elements of networking.
This is a very big challenge in the typical one-semester introductory course that has
limited time available. We have organized the book so that all the relevant topics can be
covered at some minimum essential level of detail. Additional material is provided that
allows the instructor to cover certain topics in greater depth. Dependencies between
sections are discussed later in the Preface.

CHANGES FROM THE FIRST EDITION

The most important change in the second edition is the extensive use of the open-source
Ethereal network protocol analyzer in the teaching of network protocols. Ethereal allows
any PC to capture live network traffic and to analyze the headers and payloads of the
stream of captured traffic at layers 2 and above at any level of detail. We use Ethereal
in the following ways: ‘

 Examples of Ethereal packet captures demonstrate the operation of protocols such as
HTTP, SMTP, Telnet, SIP, RSVP, RTP, DNS, TCP, UDP, OSPF, IP, ARP, Ethernet,
802.11, PPP, LCP, IPCP, SSL, and TLS. '

* We provide instructors with Ethereal packet capture files that allow them to interac-
tively demonstrate the operation of protocols in class.

» Exercises in the problem section require the students to carry out their own packet
captures to examine and analyze the operation of protocols using real traffic.

» The book website contains experiments that involve the use of Ethereal in Linux-
based router networks.

The second edition also contains various organizational and content changes. The
following lists the key content and organizational changes from the first edition:

* The material in the book has been rearranged so that optional sections can be skipped
withoeut a disruption in the topic flow. The sections that contain optional material are
indicated by a diamond () in the heading. The optional sections that contain detailed
mathematics are now indicated by a sidebar.

e Chapter 1 has been shortened and the discussion of network evolution has been
simplified. The functions associated with each layer are introduced along with the
discussion on network evolution.

xx Preface

* In Chapter 2 the discussion on how all the layers work together has been improved
by introducing examples using Ethereal packet captures. The section on application
layer protocols has been expanded and a new section provides an introduction to
network protocol analyzers.

* PCM speech coding has been moved from Chapter 12 to Chapter 3.

* Chapter 4 provides more detail on SONET and optical transport networks. Satellite
cellular networks have been dropped.

* Chapter 5 now consists of two parts. The first part deals with peer-to-peer protocols
using reliable data transfer protocols as an example. The first part also includes TCP
reliable byte stream service. The second part focuses on data link layer protocols and
now includes a section on framing.

* Chapter 6 has also been divided into the principles of medium access control proto-
cols (Part I) and LANSs (Part IT). We have simplified the mathematical discussion of
medium access controls and provide details in a separate section.

* In Chapter 7 we have streamlined the discussion of packet networks, and we have
separated clearly the more advanced discussion of traffic management.

* Chapter 8 makes extensive use of packet capture examples to illustrate the operation
of TCP/IP protocols.

* Chapter 10 on advanced network architectures has been revised extensively. The
discussion of ATM over IP has been replaced by a discussion of the overlay and peer
models to network interconnection. The chapter now contains discussion on virtual
networks and GMPLS. The material on RTP and SIP has been updated and moved
from Chapter 12 to this chapter.

* Chapter 11 has been updated with brief discussions of the Advanced Encryption
Standard and 802.11 security.

CHAPTER DEPENDENCIES

The book was designed to support a variety of introductory courses on computer and
communication networks. By appropriate choice of sections, the instructor can provide
a desired focus or make adjustments to account for the background of the students.
Figure 1 contains a flow chart of the dependencies between sections in the book. The
solid black line indicates the sequence of topics that forms the core of most intro-
ductory courses. The dashed lines show sections that can be added to provide greater
depth in various topic areas. Section numbers in parentheses indicate dependencies that
involve only subsections. After Chapter 8, the chapters are less interdependent. Chap-
ter 11 depends on Chapter 8 only in regards to the header structure of IPv4 and IPv6.
Chapter 12 depends only on Sections 3.1 and 3.2. Appendix A on queueing models pro-
vides supporting material for Sections 4.7, 5.7, and 6.5, which deal with performance
modeling.

Preface xxi

1.1-1.2 Network Evolution J— ----------------------- ->{ 1.3 Evolution Factors
{ ——
2.1-2.3 Layered Architecture [~~~ " """ T=T ST T oo m oS > Utsilitil:g; ication Layer and
Overview of TCP/IP No
~~{ 2.4 Sockets |
A 4
. T PP > 3.6-3.7 Line Coding and
3.1-3.2 Digital Information - ~ ™ Modems
icital T .
and Digital Transmission . [3.3-3.5 Digital Information,
Al Channels, and Digital b= - -P{ 3.8 Transmission Media I
} Transmission .
[3.9 Error Detection]

. 171 4.8 Cellular Networks J

AY

4.4-4.6 Circuit Switching
Y - ~¥| and Telephone Networks [
[4.1 Multip: xing £

s *[4.7 Telephone Traffic l

~~al 4.2-4.3 SONET and
Transport Networks

Y

5.1-5.5 Peer-to-Peer _ | S6HDLC]

Protocol; ARQ, Flow control [

TCP Reliable Stream Service; [_

Framing, PPP ~~{5.7 Link Sharing]

Y
X izati -

6.1-6.2 Multiple Access, |-~ | 6.4 Channelization k- {65 MAC Pertormance |
Random Access == 06.3 Scheduling k-

!

6.6—-6.7 LAN protocols .
Ethernet :—--»[6.11 LAN Bridges fem -

*{ 6.10 Wireless LANs I

] 6:8-69 Ring LANS]
[]

Y

7.1-7.5 Packet Switching, Lo - _
Routing, Shortest Paths -»l 76 AT J- -»(37 78 Trafﬁrc Managementj
4]
, , 7 ¥
ﬁ.l—&6 TCP/IP Architecture J- -] %}7{2:8},8 x(‘:g;;;a; Routing, K f9 ATM Architecture J
: s ~ /l -7 ‘
— ~ ’
82 8.3): S / _-7(10.4)

~ / -
Y " |2
[11. Network Security J rlo. Advanced Architectures ” l 12. Multimedia Infonnatioﬂ

I?ppendix A Queueing Models I rAppendix B Network ManagementJ

FIGURE 1 Chapter dependencies (solid arrows show sequence of core topics).

xxii Preface

PEDAGOGICAL ELEMENTS

We have improved the pedagogical elements of the first edition and offer several new
elements.

* Ethereal Virtual Lab. Lab experiments are the most effective means for reinforcing
the concepts taught in lectures. At the physical layer a rich set of instruments (for
example, oscilloscopes, spectrum analyzers, bit error rate sets) is available in the
field to troubleshoot systems and can be used in the lab to teach and demonstrate the
application of concepts in real systems. The tcpdump program written by Jacobson,
Leres, and McCanne has formed the basis for many network protocol analyzers that
are now used to troubleshoot protocols in network systems in the field and in the lab.
The Ethereal open-source tool is one such network protocol analyzer that supports a
very broad array of protocols and that is continuously updated by a large community
of developers. We have used Ethereal to teach protocols in lectures and in experiments
and have found it to be very effective in bringing the protocol concepts to life.

Figure 2 shows an Ethereal screenshot of a packet capture that a student can readily
capture from a PC at home. The top pane shows the sequence of packets that transpire

espa e erea -
Fis Edit Ceplure Display Tools Help
Info
Lo R I W S N FANET) S L e T
2 0.129976 128.100.100.1:8 128.1 11.13 DNS Standard query response A 64.15.247.200 A 64.15.247.245 A 64.°
3 0.131524 128.100.11.13 64.15.247,200 TP 1127 > http [SYN] Seq=3638689752 Ack=0 Win=16384 Len=0
4 0.168286 64.15.247.200 128.100.21.13 TCcP http > 1127 {S¥N, ACK] Seq=1396200325 Ack-=3638683753 win=1460
5 0.168320 128.100.11.13 64.15,247.200 ce 1127 > http [ACK]) sSeq=3638689753 Ack=1396200326 win=17316 Len
6 0.1.68088 128.100.11.13 64.15.247.200 HITP GET / HTTP/1.1
7 0.205439 ©4.15.247.200 128.100.11.13 TCP http > 1127 [ACK} 5eq=1296200326 Ack=3638600402 wine32767 Len
8 0.236676 64.15.247.200 128.100.11.13 HTTP HTTP/1.1 200 OK .
J -~
@rrame 1 (75 byres on wire, 75 bytes captured) 59

@EThernet 11, Src: 00:90:27:96:b8:07, pst: 00:€0:52:ea:b5:00
B 1Internet protocol, sr¢ Addr: 128.100.11.13 (128.100.11.13), Dst Addr: 128.100.100.128 (128.100.100.128)
version: 4
Header length: 20 oytes
Boifferentiated services fteld: 0x00 (0SCP Ox00: pefault; ECN: 0x00)
Total Length: 61
Identification: Ox5441
@Flags: Ox00
Fragment offset: 0
Time to live: 128
protocol: uoP (0x11)
Header checksum: 0x7619 (correct)
source: 128.100.11.13 (128.100.11.13)
Destination: 128.100.10C.128 (128.100.100.128)
Buser patagram Protocol, Src Port: 1126 (1126), 0st Port: domain (53)
Source port: 1126 (1126)
Destination port: domain (53)
tength: 41
Checksum: 0x4983 (correct)
©pomain Name System (query)
Transaction ID: Ox00a$
@Flags: 0x0100 (Standard query)
qQuesticns: 1
Answer RRs: 0
Authority RRs: 0O
Additional RRs: ©

Bqueries e
B www.nytimes, com: type A, class iner
Name: www.nyTimes. com /|

0000 00 e0 52 e2a b5 00 00 90 27 96 b8 07 O8 00 45 00
0010 00 3d 54 41 00 00 80 11 76 19 80 64 Ob Cd 80 64
0020 64 B0 04 66 00 35 00 29 49 83 00 a5 01 QO 00 OL
0030 00 00 00 00 00 00 03 77 77 77 07 6e 79 74 63 6&d
0040 65 73 03 63 6f 6d 00 00 Q1 00 Q1

Fiter || _/l R-sstlﬁpply"?ilc, nytimespackets

FIGURE 2 Sample Ethereal display.

Preface xxiii

after the student clicks on a web link: A DNS query and response; A TCP three-way
connection setup; an HTTP request, followed by a TCP acknowledgment, and then the
beginning of the HTTP response. The sequence of packets exchanged for various types
of protocols can be analyzed in this fashion. The middle pane allows the user to delve
into the details in the headers of any of the protocol data units at layer 2 and above.
The middle pane in the figure shows some of the details of the IP, UDP, and DNS
headers. The bottom pane allows the user to zoom into the bits and bytes of the header
as well as the payload. This rich set of capabilities was developed within Ethereal for
use in troubleshooting protocols in development labs as well as in the field. These same
capabilities make Ethereal an extremely powerful teaching tool.

We use Ethereal to examine PPP, HDLC, Ethernet, MPLS, IP, 1Pv6, OSPE, UDP,
TCP, DNS, HTTP, RTP, SIP, H.323, SSL, and TLS. We provide the instructors with
packet capture files that allow them to demonstrate protocols interactively in the class-
room. Most of the examples can be readily reproduced and examined in greater detail
by the student. We also introduce networks utilities such as PING, IPconfig, netstat,
and traceroute, which can be used in exercises that involve Ethereal packet captures.

o Numerous figures. Network diagrams, time diagrams, performance graphs, state tran-
sition diagrams are essential to effectively convey concepts in networking.

o Lecture charts. We have prepared approximately 500 MS PowerPoint® charts for use
in lecture presentations. We have also prepared approximately 50 presentation charts
that use animation to demonstrate certain key concepts more effectively. All of these
charts are available to instructors in the book web site.

o Numerous examples. The discussion of fundamental concepts is accompanied with
examples illustrating the use of the concept in practice. Numerical examples are
included in the text wherever possible.

o Text boxes. Commentaries in text boxes are used to discuss network trends and inter-
esting developments, to speculate about future developments, and to motivate new
topics. '

« Problems. The authors firmly believe that learning must involve problem solving. The
book contains approximately 600 problems. Each chapter includes problems with a
range of difficulties from simple application of concepts to exploring, developing,
or elaborating various concepts and issues. Quantitative problems range from simple
calculations to brief case studies exploring various aspects of certain algorithms, tech-
niques or networks. Programming exercises involving sockets and TCP/IP utilities
are included where appropriate.

* Chapter introductions. Each chapter includes an introduction previewing the material
covered in the chapter and in the context of the “big picture.”

e Chapter summaries and checklist of important terms. Each chapter includes a sum-
mary that reiterates the most important concepts. A checklist of important terms aids
the student in reviewing the material.

o Mathematical sections. In general key mathematical results are summarized in the
main text. A sidebar indicates (optional) mathematical sections that contain more
detailed mathematical discussion or derivation of these results.

* References. Each chapter includes a list of references. Given the introductory nature
of the text, references concentrate on pointing to more advanced materials. Reference

xxiv Preface

to appropriate Internet Engineering Taskforce (IETF) RFCs and research papers is
made where appropriate, especially with more recent topics.
* A website. The following website www.mhhe.com/leon-garcia contains links to the
following teaching resources:
* An Instructor’s Solutions Manual
* Additional problems, exercises and experiments for instructors
¢ Answers to selected problems for students
* Animated PowerPoint lectures and presentations
* Chapter pointers to useful and interesting websites

ACKNOWLEDGMENTS

The material in the book was developed over many years in introductory as well as
advanced courses in networking, both in regular undergraduate and graduate programs
as well as in programs with an orientation towards professional practice. We acknowl-
edge the feedback from the many students who participated in these courses and who
used various versions of the manuscript.

For their help on the first edition, we acknowledge the input of the graduate students
who served as teaching assistants in these courses, especially Dennis Chan, Yasser
Rasheed, Mohamed Arad, Massoud Hashemi, Hasan Naser, and Andrew Jun.

We thank Anindo Banerjea, Raouf Boutaba, Michael Kaplan and Gillian Woodruff
for many exciting conversations on networking. Anindo and Raouf graciously provided
some of the material that is presented in Chapter 2. We would also likz to thank Anwar
Elwalid and Debasis Mitra for their continued encouragement and interest in the book.
We thank Yau-Ren Jenq for reviewing the fair queueing discussions in detail.

We are especially grateful to Irene Katzela for testing the manuscript in her courses.
We also thank Ray Pickholtz for testing various versions of the text, including the beta
version, and for his many valuable suggestions and his continued encouragement.

We thank the reviewers for their many useful comments on the various versions of
the firstedition manuscript: Subrata Banerjee (Stevens Institute of Technology), John A.
Copeland, (Georgia Institute of Technology), Mario Gerla (UCLA), Rohit Goyal (Ohio
State University), Gary Harkin (Montana State University), Melody Moh (San Jose State
University), Kihong Park (Purdue University—West Lafayette), Raymond L. Pickholtz
(The George Washington University), Chunming Qiao (SUNY Buffalo), Arunabha Sen
(Arizona State University), Stuart Tewksbury (West Virginia University), and Zhi-li
Zhang (University of Minnesota).

We would like to acknowledge the many friends from Nortel Networks for showing
us the many facets of networking. We thank Sidney Yip for opening the door to many
years of interaction. We also thank Richard Vickers, Marek Wernik, and Jim Yan for
many illuminating conversations over the years. We especially thank Tony Yuen for
sharing his vast knowledge of the networking industry and for continuously showing
how the big picture is actually bigger!

For their help with the preparation of the second edition we would like to thank
the following reviewers: Maurice F. Aburdene (Bucknell University), John Anderson

Preface xxv

(University of Lund), LeRoy W. Bearnson (Brigham Young University), Michael J.
Donahoo (Baylor University), Yuguang Fang (University of Florida), Jeff Fedor (Uni-
versity of Southern California), Jeremiah F. Hayes (Concordia University), Mike Kain
(Drexel University/Unisys Corporation), W. David Laverell (Calvin College), Ching-
Cheng Lee (San Jose State University), Derong Liu (University of Illinois—Chicago),
T. N. Nagabhushan (Sri Jayacharajendra College of Engineering), Juan Pimentel
(Kettering University), Arunabha Sen (Arizona State University), Vassilis Tsaoussidis
(Northeastern University), and Bryan Usevitch (Univ. of Texas at El Paso).

We also thank many friends at AcceLight Networks who shared their experience
of networks with us: Hyong Kim, Leigh Chang, Louis Zhang, Massoud Hashemi,
Paul Chow, Debashis Basak, Denny Lee. Safa Almalki, Tom McGill, Hasan Naser,
Srini Ramaswami, Stanko Vuleta, Rick Murphy, Stephane Gagnon, Ryan Moore, Mark
Milinkovic, Jingyun Zhang, and Mark Fredericks. We thank Paul Bertels and Muhamed
Durani for sharing their knowledge of Ethereal with us. We are also grateful for various
technical interactions we had with colleagues at Fujitsu: Yau-Ren Jenq. Edmund Cher,
Amalendu Chatterjee, Anna Cui, Steven Wright, and Masafumi Katoh; and at Bell
Labs: Iraj Saniee, Yikai Su, Debasis Mitra, Anwar Elwalid, Carl Nuzman, Krishnan
Kumaran, Randy Giles, and Lijun Qian.

We thank Eric Munson from McGraw-Hill for persuading us to take the plunge
with this project, and Betsy Jones, Publisher, for providing decisive support at key
times. In addition we thank the production team at McGraw-Hill for their patience,
ideas, and continued support, especially John Griffin and Jill Peter.

IW would like to thank his wife Liesye for her constant encouragement and con-
tinued support while he was working on the second edition of the book.

Finally, ALG would like to thank his partner and best friend, Karen Carlyle, who
made this second edition happen. ALG can finally think about renovating the house.

With the help of the many reviewers, professors, and students who have used
previous versions of this book, we have tried to make the complex and fluid topic
of network architecture as approachable, up-to-date, and error-free as possible. We
welcome all comments and suggestions on how to improve the text. Please contact us
via the text’s website with any ideas you may have.

Alberto Leon-Garcia
Indra Widjaja

ABOUT THE AUTHORS

Alberto Leon-Garcia is a Professor in the Department of Electrical and Computer
Engineering at the University of Toronto where he holds the Jeffrey Skoll Chair in
Computer Networks and Innovation. He was also Chief Technical Officer and co-
founder of AcceLight Networks Inc. where he led the development of a terabit multi-
service optical switch. In 1999 Dr. Leon-Garcia became an IEEE fellow for “For
contributions to multiplexing and switching of integrated services traffic.”

At the University of Toronto, Dr. Leon-Garcia was the first holder of the Nortel
Institute Chair in Network Architecture and Services. In 1998 he founded the Master of
Engineering in Telecommunications program. Dr. Leon-Garcia has proudly supervised
more than sixty graduate and postgraduate students.

Dr. Leon-Garcia is the author of the textbooks Probability and Random Pro-
cesses for Electrical Engineering (Addison-Wesley), and Communication Networks:
Fundamental Concepts and Key Architectures (McGraw-Hill), coauthored with
Dr. Indra Widjaja.

Indra Widjaja received his Ph.D. degree in electrical engineering on high-speed packet
switching architectures from the University of Toronto in 1992. Since 2001, he has been
a researcher at Bell Laboratories, Lucent Technologies.

Dr. Widjaja’s current research interests include traffic engineering, architectures for
cost-effective transport networks, and high-speed packet switching. He has extensive
publication in technical journals and conferences and holds several patents in switching
architectures. He is also an active member of IETF and IEEE.

In 1993, Dr. Widjaja performed research on traffic management at the Teletraffic
Research Center in Adelaide, Australia. From 1994 to 1997, he was Assistant Professor
of Electrical and Computer Engineering at the University of Arizona where he taught
courses in Computer Networking, Computer Architecture, and Digital Telephony, and
conducted research in communication networks. He was also a Technical Consultant to
Motorola and Lucent Technologies. From 1997 to 2001, he was with Fujitsu Network
Communications where he worked on the architecture definitions and requirements for
core switch, access switch, and transport products.

XXVii

CHAPTER 1

Communication Networks and Services

A communication network, in its simplest form, is a set of equipment and facilities
that provides a service: the transfer of information between users located at various
geographical points. The most familiar example of a communication network is the tele-
phone network, which provides telephone service, the bidirectional transfer of voice
signals between people. Other examples of networks include computer networks, tele-
vision broadcast networks, cellular networks, and the Internet.

Communication networks provide a service much like other ubiquitous utilities
such as the water supply or electricity power systems. On the other hand, communi-
cation networks exhibit tremendous flexibility in their use and in this respect they are
closest to transportation networks. Communication networks, along with transportation
networks, have become essential infrastructure in every society. Both types of networks
provide flexible interconnectivity that allows the flow of people and goods in the case of
transportation and information in the case of communications. Both transportation and
communication networks are “enabling” in that they allow the development of a multi-
plicity of new services. For example, the development of a postal service presupposes
the availability of a good transportation system. Similarly, the availability of telephone
service enables other services such as facsimile, voice mail, and electronic banking.

The ability of modern communication networks to transfer communication at
extremely high speeds allows users to gather information in large volumes nearly
instantaneously and, with the aid of computers, to almost immediately exercise action
at a distance. These two unique capabilities form the basis for many emerging services
and an unlimited number of future network-based services. For example, the Internet
currently provides the communication services that enable computers and servers to
provide valuable services such as e-mail, instant messaging, information search and
retrieval, and various forms of electronic commerce. Audio streaming and interactive
network games are indicators of the enormous potential for media rich services over a
future Internet.

2 CHAPTER 1 Communication Networks and Services

The purpose of this chapter is to explain how the design or “architecture” of a
network is influenced by the services that it supports. In Section 1.1 we consider the
evolution of three example networks and their associated services. This discussion
serves to identify the basic elements that networks must provide. In Section 1.2 we
return to a discussion of new and emerging services and we consider how these services
are influencing the evolution of modern networks. Section 1.3 concludes the chapter
by examining other factors that influence network evolution.

1.1 EVOLUTION OF NETWORK ARCHITECTURE
AND SERVICES

A communication service involves the transfer of information. Different services differ
in the details of how and in what form information is transferred. We will use three
example networks to show how the details of the service influence the design of the
network. The three example networks are: telegraph networks, telephone networks, and
computer networks. In each case we provide an overview of the network’s development,
and then discuss the network from a more general service/architecture viewpoint. An
indicator of the progress in communications technology is the speed at which informa

tion can be transmitted as measured in bits/second. Figure 1.1 shows the improvement
in transmission bit rate over the last 150 years. In this time we have gone from telegraph
systems that operated at tens of bits/second to modern optical systems that operate at -
terabits/second.

1.1.1 Telegraph Networks and Message Switching

In 1837 Samuel B. Morse demonstrated a practical telegraph that provided the basis for
telegram service, the transmission of text messages over long distances. In the Morse
telegraph, shown in Table 1.1, the text was encoded into sequences of dots and dashes.
Each dot or dash was communicated by transmitting short and long pulses of electrical
current over a copper wire. By relying on two signals, telegraphy made use of a digital

L.OE+14 : FIGURE 1.1 Evolution of
DWDM transmission rate.
.

1.OE+12
1.OE+10 SURELLE

1.OE+08 T4 carrier @

T-1 carrier
r Y

1.0E+06

1.0E+04

Baudot multiplex

1.0OE+02

Transmission rate (bits/second)

. .
Printing telegraph

T
1850 1875 1900 1925 1950 1975 2000

1.1 Evolution of Network Architecture and Services 3

TABLE 1.1 International Morse code.

Morse Code Morse Code Morse Code Morse Code

—Tommouaw»
TOWOZZOC R
t
“NALAxE<CcH®
|
I
[«=JANoREC SRR e N R i
l

transmission system. The Morse telegraph system is a precursor of the modern digital
communication system in which all transmission takes place in terms of binary signals
and all user information must first be converted to binary form.

In 1851 the first submarine cable was established between London and Paris. Even-
tually, networks of telegraph stations were established, covering entire continents. In
these networks a message or telegram would arrive at a telegraph station, and an operator
would make a routing decision based on the destination address. The operator would
store the message until the desired communication line became available and then
would forward the message to the next appropriate station. This store-and-forward
process would be repeated at each intermediate station until the message arrived at
the destination station. Message switching is used to describe this approach to operat-
ing a network. Addressing, routing, and forwarding are essential elements of modern
computer networks.

The transmission rate (in bits/second) at which information could be transmitted
over a telegraph circuit was initially limited to the rate at which a single human operator
could enter a sequence of symbols. An experienced operator could transmit at a speed
of 25 to 30 words/minute, which, assuming five characters per word and 8 bits per
character, corresponds today to 20 bits/second (bps) in Figure 1.1.

A subsequent series of inventions attempted to increase the rate at which infor-
mation could be transmitted over a single telegraph circuit by multiplexing, that is,
combining the symbols from several operators onto the same communication line. One
multiplexing system, the Baudot system invented in 1874, used characters, groups of
five binary symbols, to represent each letter in the alphabet. The Baudot multiplex-
ing system could interleave characters from several telegraph operators into a single
transmission line.

The Baudot system eventually led to the modern practice of representing alphanu-
meric characters by groups of binary digits as in the ASCII code (short for American
Standard Code for Information Interchange). Table 1.2 shows the binary representation
for a subset of the ASCII code. The Baudot system also eventually led to the de-
velopment of the teletype terminal, which provided a keyboard for entering character
information, and could be used to transmit and receive digital information. The terminal
was later used as one of the early input/output devices for digital computer systems. As
Figure 1.1 shows, a Baudot multiplexer telegraph with six operators achieved a speed
of 120 bps.

4 CHAPTER 1 Communication Networks and Services

TABLE 1.2 Subset of ASCII character set and their binary representation.

Binary Char Binary Char Binary Char
0000000 NUL 0110000 0 1000001 A
0000001 SOH 0110001 1 1000010 B
0000010 STX 0110010 2 1000011 C
0000011 ETX 0110011 3 1000100 D
0000100 EOT 0110100 4 1000101 E
0000101 ENQ 0110101 5 1000110 F
0000110 ACK 0110110 6 1000111 G
0000111 BEL 0110111 7 1001000 H
0001000 BS 0111000 8 1001001 I
0001001 HT 0111001 9 1001010 J

Another approach to multiplexing involves modulation, which uses sinusoidal sig-
nals (tones) to carry multiple telegraphy signals. For example, each of the binary sym-
bols could be transmitted by sending a sinusoidal signal of a given frequency for a
given period of time, say, frequency fj to transmit a “0”, fj to transmit a “1.” Multiple
sequences of binary symbols could be transmitted simultaneously by using multiple
pairs of frequencies for the various telegraphy signals. These modulation techniques
formed the basis for today’s modems.

Prior to the invention of telegraphy, long-distance communication depended pri-
marily on messengers that traveled by foot, horse, or other means. In such systems, a
message might propagate at a rate of tens of kilometers per day. The invention of the
electric telegraph made long-distance communication almost instantaneous; for exam-
ple. an electric signal would take less than 5 milliseconds to cover 1000 kilometers.'
Clearly. electrical communications had marked advantages over all other forms of
communications. Indeed, the telegraph gave birth to the “news” industry; to this day,
some newspapers have the name “The Daily Telegraph.” In 1901 Guglielmo Marconi
used Morse code to send and receive radio signals across the Atlantic, giving birth to
long-distance wireless radio communications.

Now let us consider the telegraph network from a service/architecture viewpoint.
The telegraph service involves the transmission of text messages between geographi-
cally distant locations. To provide this service, the architecture of the telegraph network
contains the following key elements or functions:

1. The foundation for this network is a digital transmission system that enables two
digits to be sent, “dot” and “dash” in the case of Morse code, or “zero” and “one”
in the case of Baudot or ASCII code. The transmission medium can be copper wire,
radio, or smoke signals for that matter.”

'The speed of light in a vacuum is 3 x 10® meters/second; in cable, itis 2.3 x 108 meters/second; in optical
fiber, itis 2 x 10® meters/second.

2Indeed in the 1700s “visual telegraph™ networks in Europe used line-of-sight semaphore systems to send
signals between towers and hills. Visual networks of this type date back at least to the time of the Roman
Empire.

1.1 Evolution of Network Architecture and Services 5

2. A framing method is required for indicating the beginning and end of messages
and for taking the sequence of dots/dashes or zeros/ones and grouping them into
characters, and in turn, meaningful messages.

3. A system for specifying the destination address of messages is needed. A routing
procedure determines the path that a message follows across a network of telegraph
stations interconnected by digital transmission lines.

We will see later that the above clements and functions are fundamental to the design
of modern computer networks.

1.1.2 Telephone Networks and Circuit Switching

In 1875, while working on the use of sinusoidal signals for multiplexing in telegraphy,
Alexander Graham Beli recognized that direct transmission of a voice signal over
wires was possible. In 1876 Bell developed a device that could transmit the entire voice
signal and could form the basis for voice communication, which we now know as the
telephone. The modern telephone network was developed to provide basic telephone
service, which involves the two-way, real-time transmission of voice signals across a
network.

The telephone and telegraph provided services that were fundamentally different:
The telegraph required an expert operator with knowledge of Morse code, while the tele-
phone terminal was very simple and did not require any expertise. Consequently the
telephone was targeted as a direct service to end users, first in the business and later in
residential markets. The deployment of telephones grew quickiy, from 1000 phones in
1877 to 50,000 in 1880 and 250.000 in 1890.

Connectivity in the original telephone system was provided by an analog
transmission system. The transmitted electrical signal is analogous to the original
voice signal, that is, the signal is proportional to the sound pressure in speech as shown
in Figure 1.2. The task of the analog transmission system is to deliver a signal that is a
replica of the original voice signal. The need to preserve the quality of the signal led
to the development of methods for conditioning transmission lines and for amplifying
signals so that longer reaches could be attained.

It was quickly recognized in the early days of telephony that providing dedicated
lines between each pair of users is very costly. As shown in Figure 1.3a, N(N — 1)/2
transmission lines are required it dedicated lines are deployed between each pair of
N users. The number of transmission lines grows very quickly, for example N = 1000
requires 495,000 lines! In 1878 telephone switches were introduced to allow human
operators to interconnect telephone users on demand.

FIGURE 1.2 Sample signalof the sound “ae™ as in cat.

6 CHAPTER 1 Communication Networks and Services

User 1 FIGURE 1.3 Telephone network:
(a) dedicated resources require
numerous lines; (b) a switch in the
User 2 form of an operator with a patch cord
User N panel; (¢) cords interconnecting user
sockets providing end-to-end
connection.

(a)

(b)

N4

(©) TR
= O
(0] (0]
o el 7Y
O o

Inits simplest form, the telephone switch consists of a patch cord panel and a human
operator as shown in Figure 1.3b. Traditionally a telephone call has three phases. In
the first phase (the setup phase), the originating user picks up the telephone and in the
process activates a signal in the circuit that connects it to the telephone office. The signal
alerts the operator in a central office (CO) that a connection is requested. The operator
speaks to the originating user and takes the requested destination station number and
checks to see whether the desired user is available. If so, the operator establishes a
connection by inserting the two ends of a cord into the sockets that terminate the lines of
the two users as shown in Figure 1.3c. This connection allows electrical current, and the
associated voice signal, to flow between the two users. If a telephone connection involves
more than a single telephone office, then several operators collaborate to establish an
end-to-end connection. This connection is maintained for the duration of the call. Once
the connection is established the second phase (information transfer) begins. When the
users are done with their conversation, they “hang up” their telephones, which generates
a signal indicating that the call is complete. At this point, the third phase (connection
release) is entered and the various telephone lines involved in the connection are then
made available for new connections.

Starting in the 1890s with the invention of the Strowger switch, the patch panel
switches and operators were replaced by automated electromechanical switches that
could take a signal that contained the destination telephone number and automati-
cally establish a circuit to the desired telephone. Telephone switching offices were

1.1 Evolution of Network Architecture and Services 7

Toll
~_
Tandem Tandem

VRN

o s o ch s

FIGURE 1.4 Hierarchical telephone network structure.

interconnected and organized in a hierarchical network, with customers attaching to
end offices, which in turn are connected to tandem offices and so forth as shown in
Figure 1.4. A hierarchical decimal telephone numbering system was developed for
dialing connections in the telephone network. For example, in North America the area
code specifies a subarea that has been assigned a three-digit number. The next three
numbers are the exchange code, which identifies specific switching facilities in a cen-
tral office within the subarea. The final four digits specify a specific line that connects
the user to the central office. For example, the number 416-967-1111 will get you to a
phone in Toronto (area code 416) where you can order pizza that will be delivered in
30 minutes or it’s free.® Figure 1.5 shows how the telephone connection continues to
consist of three phases: setup, transfer, and release.

We say that telephone networks are connection-oriented because they require the
setting up of a connection before the actual transfer of information can take place. The
transfer mode of a network that involves setting up a dedicated end-to-end connection
is called circuit switching. Note that in circuit switching the routing decision is made
when the path is set up in switching and transmission equipment across the network.
After the call has been set up, information flows continuously across each switch and
transmission line along the path. No additional address information is required after
the call is set up. .

The telephone network has undergone a gradual transition from analog technology
to its present state, where it is almost completely based on digital transmission and
computer technology. This transition began with the invention of the transistor in 1948
and accelerated with the invention of integrated circuits in the 1960s, leading to the
development of digital transmission systems that could carry voice. In these systems
an analog voice signal, such as the one shown in Figure 1.2, is converted into a binary
stream of 64 kilobits/second (kbps) and the resultant digital signal is carried in a digital
transmission system that interconnects two telephone offices. The T-1 digital transmis-
sion system was first deployed in 1962 to carry voice signals between telephone central
offices. The T-1 system also provided for the multiplexing of 24 digitized voice signals

3Some restrictions apply!

8 CHAPTER I Communication Networks and Services

of current in wires that connect to the telephone
office.

@ The caller picks up the phone triggering the flow

19

PR The current is detected. and a dial tone is
“Hl* transmitted by the telephone office to indicate that

=3 it is ready to receive the destination number.
)
?
2< 3. The caller sends this number by pushing the keys
5)
o on the telephone set. Each key generates a pair of
2 Telephone clephon ye pair
= X tones that specify a number. (In the older phone
o] networ sets, the user dials a number that in turn generates
a corresponding number of pulses.)
The equipment in the telephone office then uses
4. the telephone network to attempt a connection.

If the destination telephone is busy, then a busy
tone is returned to the caller, otherwise ringing
signals are sent to both the originating and
destination telephones. The ringing signals are
discontinued when the destination phone is picked
up and communication can then proceed.

Telephone
network

Telephone
network

Ae——
o

The voice signals travel in both directions.

Information
transfer
JE—

Telephone
network

Either user terminates the call by putting down a
receiver.

Connection
release
=

FIGURE 1.5 The three phases of a telephone connection.

into a single digital transmission line and operated at a transmission rate of 1.5 Mbps
as shown in Figure 1.1.

Even as digital transmission systems were being deployed, the new digital trans-
mission systems had to interface to existing analog switches. Upon arrival at an analog
switch, the digital signal would be reconverted into analog voice signals for switching
and then reconverted to digital form for transmission in the next hop. This inefficiency
was eliminated by the deployment of digital switches in the early 1980s that can switch
the voice signals in digital form. Thus a voice call would need to be digitized only once
upon entering the network; then it would be transmitted and switched in digital form
until it reached the other end of the network. The call would then be converted to analog
form for transmission over the pair of wires that connects the user to the network.

In the 1960s and 1970s computer-based connection control was introduced for the
setting up of connections in a switch. Computers would examine a request message for
a call as it came in, check to see whether the destination was available, and if so, make
the appropriate connection. The use of computers to control switches provided great
flexibility in modifying the control of a connection and in introducing new features.
[t also led to the introduction of a separate signaling network to carry the messages

1.1 Evolution of Network Architecture and Services 9

between the computers that controlled these switches. In addition to setting up calls.
the signaling network enabled the introduction of new services such as credit card calls,
long-distance calls, 800 calls, call screening, voice mail, and many other services.

A major application of the signaling network is in cellular telephone service. This
service requires that mobile users be provided with seamless radio connectivity even
as they move from an area or cell covered by one antenna to an adjacent cell covered
by a different antenna. The signaling network handles the messages that coordinate
the handoff of users between cells. The usefulness of mobile communications led to
explosive growth in the use of cellular phones. It also fostered new user expectations
in terms of mobility and personal customization in their communications services not
only for voice but also for data.

Let us now consider the interplay between telephone voice service and the archi-
tecture of the telephone network. Basic telephone voice service provides for the near-
instantaneous (“real-time”) transfer of voice signals between humans. The following
elements and functions are essential in the architecture of the telephone network:

1. Transmission systems for the transfer of voice signals. These systems can be analog
or digital depending on the format of the voice signal.

2. Telephone switches to transfer a signal from an incoming transmission line to an

output transmission line. The switches can be analog or digital depending on the

attached transmission system. The tandem connection of transmission lines and
telephone switches form the end-to-end circuit that transfers the voice signal.

A telephone numbering system to identify telephone users or stations.

4. Methods for allowing users to indicate to the network that they require a connection,
to specify the desired telephone number, and to indicate the termination of a call.
We refer to this as a user-to-nerwork signaling system.

5. A system inside the network, for performing a rouring decision that identifies a
path in the network, based on a request for a voice connection, and a nenvork
signaling system to distribute signaling messages to computers that control switches
to establish the desired path between the two telephones.

[8%]

As in telegraph networks, transmission systems form the foundation for the tele-
phone network architecture. In addition, switches also play a role enabling the transfer
of information from multiple users. In contrast to telegraph networks, telephone net-
works require that the routing elements identify and set up the entire path before any
information flows into the network. Finally, it is noteworthy that the control part of the
telephone network, that is, the signaling system. involves computer communications.
that is, the exchange of messages between computers.

1.1.3 The Internet, Computer Networks, and Packet Switching

The Internet Protocol (IP) provides datagram service. namely. the transfer of “packets”
of information across multiple, possibly dissimilar networks. Before discussing pucket
switching and the architecture of the Internet, we need to present some of the types of
networks that the Internet operates on. We also retrace the development of computer
network architectures.

10 cHAPTER 1 Communication Networks and Services

The first computer network was the Semi-Automatic Ground Environment (SAGE)
system developed between 1950 and 1956 for air defense systems [Green 1984]. The
system consisted of 23 computer networks, each network connecting radar sites, ground-
to-air data links, and other locations to a central computer. The SABRE airline reserva-
tions system, which was introduced in 1964, is cited as the first large successful commer-
cial computer network and it incorporated many of the innovations of the SAGE system.

Early computers were extremely expensive, so techniques were developed to allow
them to be shared by many users. In the 1960s tree-topology terminal-oriented networks
were developed to allow user terminals to connect to a single central shared computer.
As the cost of computers dropped and their use in organizations proliferated, it became
necessary for users to connect to different computers for different applications. This
situation required a different topology than that of terminal-oriented networks. In addi-
tion, as “dumb” terminals were replaced by “intelligent” terminals and later by personal
computers, it became necessary to develop networks that were more flexible and could
provide communications among many computers.

The ARPANET was the first major effort at developing a network to interconnect
computers over a wide geographical area.* We emphasize the fact that the “users” of this
network were full-fledged computers, not terminals. As such, the users of this network
had processing and storage resources not available in previous terminal equipment. It
therefore became possible to develop powerful networking protocols that made use
of this processing capability at the edge of the network and to simplify the operation of
the equipment inside the network. This approach is in marked confrast to the telephone
network where the signaling and connection-control intelligence resides inside the
network, not in the telephone set.

The Internet was later developed to enable communications between computers
that were attached to different networks. IP made it possible to transfer information in
the form of packets across many, dissimilar networks. In effect IP is used to create a
single global internetwork out of many diverse networks. The TCP/IP protocols that
emerged in the late 1970s form the basis for today’s Internet.

WHAT IS A PROTOCOL?

In dealing with networks we run into a multiplicity of protocols, with acronyms such
as HTTP, FTP, TCP, IP, DNS, and so on. What is a protocol, and why are there so
many? A protocol is a set of rules that governs how two or more communicating
parties are to interact.

As an example of a protocol, Figure 1.6 shows a typical exchange of messages
that occurs when you call the telephone company to find a phone number. The
interaction begins with the user dialing for directory assistance (411). The telephone
network responds with an automated welcoming message followed by a request for
the city (and state or province depending on the location of the city). Once the user

*The Advanced Research Projects Agency (ARPA) of the U.S. Department of Defense funded the devel-
opment of the ARPANET.

1.1 Evolution of Network Architecture and Services 11

Caller Dials 417
System
vy i
Caller

replies Spdngﬁel 4
System
4__)3&'“&——/ replies
Caller

e — S
System

Jease hold”

wIhank YOU, P replies
Caller

waits «Do you have 2 first

Y P Operator &
W replies 3
Caller B
Operator

rease O™ replies
"Thaﬂk you, P
Caller /
waits System replies
Caller with number

dials

'FIGURE 1.6 411 protocol: typical message exchange when
requesting a telephone number.

responds, the network requests the name. After the user states the name, a human
operator comes online and confirms the name and address. When the user provides
the information, an automated message is played followed by a synthesized voice
stating the phone number. The interaction or protocol between the caller and system
can be defined quite precisely because the service provided is so specific.

In the case of computers, protocols must be precise and unambiguous as they
involve communications between machines. For this reason, protocols involve defin-
ing the messages that are to be exchanged between machines as well as the actions
that are to be taken when certain events take place and when certain messages are
transmitted or received.

The purpose of a protocol is to provide some type of service. In web browsing
the HyperText Transfer Protocol (HTTP) specifies how a web client and server are
to interact. Other examples of protocols are: File Transfer Protocol (FTP) for the
transfer of files. Simple Mail Transfer Protocol (SMTP) for e-mail, Internet Protocol
(IP) for the transfer of packets, and Domain Name System (DNS) for IP address
lookup. We discuss these protocols further in Chapter 2.

12 CHAPTER | Communication Networks and Services

—~

L= computer

c — T r— T T = terminal
— T Jc =T,
N —
e Modem Telephone !
Modem T
pool nelwork
(@) (b)
FIGURE 1.7 ierminal-oriented networks: G time-shaved comiputers and cables for input

devices: (b)) dial-in.

TERMINAL-ORIENTED NETWORKS

Figure {.7a shows an arrangement that allows a number of terminals to share a host com-
puter. Each terminal, initially a teletype printer and later a video terminal, is connected
by a set of wires to the computer. By exchanging messages with the host computer, the
terminal could input instructions and obtain results from the computer. Initially the ter-
minals were all located in a room adjacent to the host computer. Access from terminals
located farther from the host computer became possible as communication lines with
greater reach became available. Modem devices for transmitting digital information
were introduced so that terminals could access the host computer via the telephone net-
work, as shown in Figure 1.7b. Eventually terminal-oriented networks were developed
to provide the message transfer service that enabled host computers to be shared.
Certain Appllcatlons required a large number of geographically distributed termi-
nals to be connected to a central computer. For example, a set of terminals at various
travel agencies in a city might need to access the same computer. In most of these appli-
cations, the terminals would generate messages in a hursrv manner: that is, the message
transmissions would be separated by long idle times. The cost of providing individual
lines to each terminal could be prohibitive, so various systems were dev cloped to provide
a message transfer service between the central computer and its associated terminals.
Medium access control methods were developed to allow a number of terminals
at different locations to communicate with a central computer using a shared commu-
nication linc. The access to the line needs to be controlled so that different terminals
do not interfere with each other by transmitting at the same time. Figure 1.8 shows a
“multidrop™ line arrangement, allowing several terminals to share one line to and from
the computer. This system uses a master/slave polling arrangement whereby the central
computer sends a poll message to a specific terminal on the outgoing line. All terminals

[Poll 0
|_temina [T
Response
| from terminal
|
o TJ T T T

FIGURE 1.8 Sharing « multidrop line.

1.1 Evolution of Network Architecture and Services 13

CRC|" Information Address

Address Information CRC

FIGURE 1.9 Multiplexer systems.

listen to the outgoing line, but only the terminal that is polled replies by sending any
information that it has ready for transmission on the incoming line.

Statistical multiplexers/concentrators provided another means for sharing acom-
munications line among terminals, as shown in Figure 1.9. Messages from a terminal
are encapsulated inside a frame that consists of a header in addition to the user mes-
sage. The header provides an address that identifies the terminal. The communication
line transmits a sequence of binary digits, so a framing method is required to delineate
the beginning and end of each frame. The messages from the various terminals are
buffered by the multiplexer, ordered into a queue, and transmitted one at a time over the
communication line to the central computer. The central computer sorts out the mes-
sages from each terminal, carries out the necessary processing, and returns the result
inside a frame. The statistical multiplexer uses the address in the frame to determine
the destination terminal.

Computer applications require precise instructions to operate correctly. Early data
transmission systems that made use of telephone lines had to deal with errors in trans-
mission arising from a variety of sources: interference from spurious external sig-
nals, impulses generated by analog switching equipment, and thermal noise inherent
in electronic equipment. Error-control techniques were developed to ensure virtually
error-free communication of data information. In addition to the header, each frame of
information would have a number of redundant CRC or “check bits” appended to it
prior to transmission as shown in Figure 1.9. These check bits were calculated from the
information bits according to some algorithm and would enable the receiver to detect
whether the received frames contained errors, and, if so, to request retransmission.

Figure 1.10 shows a typical terminal-oriented network circa 1970. Remote
concentrators/statistical multiplexers at regional centers connect to a central computer,
using high-speed digital transmission lines. Each remote concentrator gathers messages

“Host

AT

San] I ; | ‘ New York
Francisco Chicago .| Atlanta City
T

FIGURE 1.10 Typical terminal-oriented network circa 1970.

14 CHAPTER 1 Communication Networks and Services

using lower-speed lines fron: various sites in its region. Multidrop lines such as those
discussed above could be used in such lines, for example, Atlanta in the figure. Note
that routing and forwarding are straightforward in these tree-topology networks as all
information flows from terminals to the central host and back.

Let us now consider the architecture of terminal-oriented networks. The service
provided by these networks involves the transfer of messages to and from a central
computer to a set of terminals. The elements in the architecture of terminal-oriented
networks is similar to that of telegraph networks:

1. A digital transmission system to transfer binary information. The transmission sys-
tem can consist of a modem operating over telephone lines or of specialized data
transmission equipment.

2. A method for the transmission of frames of information between terminals and
central computers. The frames contain address information to identify the terminals,
check bits to enable error control, and associated framing method to identify the
boundaries of a frame.

3. Inthecase of systems that are connected to the same communication line, the systems
also need a medium access control to coordinate the transmissions of information
from terminals into the shared communication line.

COMPUTER-TO-COMPUTER NETWORKS

The basic service provided by computer networks is the transfer of messages from any
computer connected to the network to any other computer connected to the network.
This function is similar to the message switching service provided by telegraph systems.
An additional requirement of a computer network is that transit times be short for mes-
sages from interactive applications. This requirement suggests that a limit be imposed
on the size of messages that are allowed to enter the network, since long messages
can impose long waiting times for interactive traffic that consists of short messages.
Packet-switching networks address this problem. These networks are designed to
provide packet transfer service, where a packet is a variable-length block of informa-
tion up to some specified maximum size. User messages that do not fit inside a single
packet are segmented and transmitted using multiple packets. As shown in Figure 1.11

PS = packet switch FIGURE 1.11 A packet-switching
H = host network.

1.1 Evolution of Network Architecture and Services 15

AMES MCCLELLAN UTAH BOULDER GWC CASE

CARN
UCSB MITRE

ETAC

—9

UCLA RAND TINKER BBN HARV NBS

FIGURE 1.12 ARPANET circa 1972 [Kahn 1972].

packets are transferred from packet switch to packet switch until they are delivered at the
destination. The messages are then recovered from individual packets or reassembled
once the component packets have been received at the destination.

The ARPANET?

The ARPANET was developed in the late 1960s to provide a test bed for researching the
interconnection of host computers using packet switching across a wide area network
(WAN), a network that can span an area larger than a city and that can even be global
in reach. From the attached host computer’s point of view, the ARPANET offered a
message transfer service. However, inside the network, the ARPANET operated on the
basis of a packet transfer service. Each packet consists of a header with a destination
address attached to user information and is transmitted as a single unit across a network,
much as a telegram would be transmitted in a telegraph network. The ARPANET
consisted of packet switches interconnected by communication lines that provided
multiple paths for interconnecting host computers over wide geographical distances.®
The packet switches were implemented by dedicated minicomputers, and each packet
switch was connected to at least two other packet switches to provide alternative paths in
case of failures. The communications lines were leased from public carriers and initially
had a speed of 56 kbps. The resulting network had a topology, such as shown in Figure
1.12. In the ARPANET host computers exchanged messages of up 8000 bits in length,
and the packet switching network was designed to transmit packets of information no
longer than a given maximum length, about 1000 bits. Therefore, messages entering
the network might require segmentation into one or more packets at the ingress packet
switch and reassembly at the egress packet switch.

ARPANET packet transmission service was connectionless in the sense that no
connection setup was required prior to the transmission of a packet. Thus packets could
be transmitted immediately without incurring the delay associated with setting up a
connection. Each packet contained destination address information that enabled the
packet switches in the network to carry out the routing of the packet to the destination.

5See [Kahn 1972], also the website entitled “A Technical History of the ARPANET—A Technical Tour.”
¢In ARPANET a packet switch was called an IMP. for Interface Message Processor.

16 CHAPTER 1 Communication Networks and Services

Each packet switch maintained a routing table that would specify the output line that was
to be used for each given destination. Packets were then buffered to await transmission
on the appropriate link. Packets from different users would thus be multiplexed into the
links between packet switches.

Packets were encapsulated in frames that used special characters to delineate the
frame, as well as check bits to enable error control. If errors were detected in an arriving
frame, the receiving packet switch would discard the frame (and its packet). The sending
packet switch would maintain a timer for each transmitted frame. A frame would be
retransmitted if its timer expired before the frame was acknowledged.

Each packet switching node implemented a distributed routing algorithm to main-
tain its routing tables. The algorithm involved the exchange of information between
neighboring nodes and the calculation of a consistent set of routing tables that together
directed the flow of packets from source to destination. This arrangement enabled the
routing tables to be updated in response to changes in traffic or topology and gave
ARPANET the capability to adapt to faults in the network. The packets would simply
be routed around the points of failure after the failures were detected and the routing
tables updated. Because routes could change, it was also possible for packets to arrive
out of order at the destination.

Each packet switch in ARPANET contained a limited amount of buffering for
holding packets. To prevent packet switches from becoming congested, an end-to-end
congestion control was developed. Operating between the source and destination packet
switching nodes, the congestion control limited the number of packets that a host can
have in transit.

In addition to defining the protocols for the operation of the packet network, the
ARPANET also defined protocols for the interaction between host computers across
the network. In particular, flow control methods were introduced to regulate the rate at
which a source computer sent messages to a destination computer. This action prevented
a sending computer from overflowing the buffers of a destination computer.

The motivation for developing computer networks was to support multiple user
applications. The ARPANET developed several lasting applications that ran in its host
computers. These included e-mail, remote login, and file transfer—applications that we
take for granted today.

ARPANET was the first large-scale wide-area packet-switching network.
ARPANET provided for the transfer of messages between host computers using a
connectionless packet switching network. Its architecture incorporated most of the
elements of modern packet switching networks:

1. High-speed (for the time) 56 kbps digital transmission lines provide for the transfer
of streams of binary information.

2. Packets between adjacent packet switches are transferred inside of frames that con-
tain delineation information as well as check bits for error control.

3. Destinations are identified by unique addresses that are used by routing tables to
perform routing decisions to select the next hop of each packet as it traverses the
network.

4. Routing tables at the packet switches are calculated dynamically in response to
changes in network traffic and topology.

1.1 Evolution of Network Architecture and Services 17

5. Messages are segmented into packets at the ingress to the network and reassembled
at the egress of the network. End-to-end congestion control mechanisms are used to
prevent congestion inside the network by limiting the number of packets a host can
have in transit.

6. Flow control methods between host computers are introduced to prevent buffer
overflow.

7. Applications that rely on the transfer of messages between computers are
developed.

In the ARPANET we see most of the elements of computer network architecture.”
Each element can be viewed as a layer in a vertical hierarchy or in an onionlike sphere.
At the lowest layer we have digital transmission providing for the transfer of bits
across a line. At each end of the line we have devices that exchange frames subject
to rules that enable recovery from errors. Packet-switching nodes, interconnected by
communications lines, use routing tables to direct packets from ingress nodes to egress
nodes in the network. To determine the paths that should be built into the routing
tables, all the packet-switching nodes run a distributed routing algorithm. Devices at the
edge of the packet-switching network segment messages into packets and reassemble
them back into messages. These devices may also regulate the rate at which packets
are allowed into the network in order to prevent congestion inside the network. Host
computers in turn may regulate the rate at which messages are sent to match the ability
of the destination computer to process messages. The resulting computer network in
turn enables the running of applications over geographically separate computers. In
Chapter 2 we will examine the layered structure of network architectures in detail.

Local Area Networks

The emergence in the 1980s of workstations that provided computing at lower cost led
to a proliferation of individual computers within a department or building. To minimize
the overall system cost, it was desirable to share (then) expensive devices such as printers
and disk drives. This practice gave rise to networks with limited distances (typically
less than one kilometer) called local area networks (LANSs). The requirements of
a LAN are quite different from those of a wide area network. The small distances
between computers in a LAN implied that low cost, very high speed, and relatively
error-free communication was possible. Complex error-control procedures were largely
unnecessary. In addition, in the local environment machines were constantly being
moved between labs and offices, which created the administrative problem of keeping
track of the location of a computer at any given time: This problem is easily overcome
by giving the network interface card (NIC) for each machine a globally unique address
and by broadcasting all messages to all machines in the LAN. A medium access
control protocol becomes essential to coordinate access to the transmission medium
in order to prevent collisions between frames. A variety of topologies can provide the
broadcasting feature required by LANs, including ring, bus, and tree networks.

The most successful LAN, the Ethernet shown in Figure 1.13a, involved transmis-
sion over a bus topology coaxial cable. Stations with messages to transmit would first

"The missing element is that of an internetwork, or “internet.”

18 CHAPTER 1 Communication Networks and Services

(a)

FIGURE 1.13 Ethernet local area network: (a) bus topology: (b) star topology.

sense the cable (carrier sensing) for the presence of ongoing transmissions. If no trans-
missions were found, the station would proceed to transmit its message encapsulated
inside a frame. The station would continue to monitor the cable in an attempt to detect
collisions. If collisions were detected, the station would abort its transmission. The
introcuction of sensing and collision detection significantly improved the efficiency of
the transmission cable.

The bus topology of the original Ethernet has a disadvantage in terms of the cost of
coaxial wiring relative to the cost of telephone cable wires as well as in terms of fault
handling. Twisted-pair Ethernet was developed to provide lower cost through the use of
conventional unshielded copper wires such as those used for telephones. As shown in
Figure 1.13b, the computers are now connected by copper wires in a star topology to a
hub that can be located in a wiring closet in the same way that telephones are connected
in a building. The computers transmit packets using the same random access procedure
as in the original Ethernet, except that collisions now occur at the hub, where the wires
converge.

A LAN provides a message-transfer service between computers and other devices
that are attached to the LAN. The elements of LAN architecture involve:

1. A high-speed (typically 10 megabits/second and above) digital transmission systen.
that may support broadcast transmissions.

2. Anaddressing structure that provides each station with a unique address and supports
broadcast transmissions.

3. A frame structure to delineate individual transmissions, and a medium access control
procedure to coordinate transmissions into the shared broadcast medium.

The Internet

In the mid-1970s after the ARPANET packet-switching network had been established,
ARPA began exploring data communications using satellite and mobile packet radio
networks. The need to develop protocols to provide communications across multiple,
possibly dissimilar, networks soon became apparent. An internetwork or internet
involves the interconnection of multiple networks into a single large network, as
shown in Figure 1.14. The component networks may differ in terms of their under-

1.1 Evolution of Network Architecture and Services 19

G = gateway/router
H = host

FIGURE 1.14 An internctwork.

lying technology and operation. For example, these networks could consist of various
types of LANs, packet-switching networks, or even individual point-to-point links. The
power in the internet concept is that it allows different networks to coexist and interwork
effectively.

The Internet Protocol (IP) was developed to provide for the connectionless trans-
fer packets called datagrams across an internetwork. In IP the component networks
are interconnected by special packet switches called gateways or routers. Each router
interface adapts to the particular attributes of the underlying network. IP routers direct
the transfer of IP packets across an internet. After arouting decision is made, the packets
are placed in a buffer to await transmission over the next network. In effect, packets from
different users are statistically multiplexed in these buffers. The underlying networks
are responsible for transferring the packets between routers.

IP traditionally provides best-effort service. Thatis, IP makes every effort to deliver
the packets but takes no additional actions when packets are lost, corrupted, delivered out
of order, or even misdelivered. In this sense the service provided by IP is unreliable. The
student may wonder why one would want to build an internetwork to provide unreliable
service. The reason is that providing reliability inside the internetwork introduces a great
deal of complexity in the routers. The requirement that IP operate over any network
places a premium on simplicity. For example, [P deals with congestion by dropping
packets. This action triggers protocols in end systems at the edge of the network to
adjust the rate at which they transmit.

IP uses a hierarchical address space that has “grouping” information embedded
in the structure. IP addresses consist of 4 bytes usually expressed in dotted-decimal
notation, for example, 128.100.11.1. IP addresses consist of two parts: a network ID
and a host ID. Machines in the same group share common portions of the address,
which allows routers to handle addresses with the same prefix in the same manner.

20 CHAPTER1 Communication Networks and Services

The Internet also provides a name space to refer to machines connected to the Internet,
for example, tesla.comm.toronto.edu. The name space also has a hierarchical structure,
but it is administrative and not used in the routing operation of the network.. Automatic
translation of names to addresses is provided by the Domain Name System (DNS).

The User Datagram Protocol (UDP) allows applications to transfer individual
blocks of user information using datagrams. UDP takes the user information, appends
appropriate information that identifies the application in the destination host, and then
uses IP to transfer the datagram across an internet. However, UDP is not appropriate
for some applications. For example, many applications also require the reliable transfer
of a stream of information in the correct sequence or order. The Transmission Con-
trol Protocol (TCP) was developed to provide reliable transfer of stream information
over the connectionless IP. TCP operates in a pair of end hosts across an IP internet.
TCP provides for error and flow control on an end-to-end basis that can deal with the
problems that can arise due to lost, delayed, or misdelivered IP packets. TCP also in-
cludes a mechanism for reducing the rate at which information is transmitted into an
internet when congestion is detected. TCP exemplifies the IP design principle, which
is that complexity is relegated to the edge of the network, where it can be implemented
in the host computers.

A rich set of applications has been developed to operate on top of the TCP/IP.
These applications include SMTP for e-mail service, FTP for file transfer, HTTP for
web service, and RTP for real-time transfer of information such as voice and video.
By building on top of TCP/IP, applications are assured of two huge advantages: (1) the
application will work over the entire Internet; (2) the application will continue working
even as the underlying network technologies change and evolve because IP will continue
to work on top of the new technologies.

In comparing the architecture of the Internet with that of ARPANET we see that
IP introduces a layer between the computers that attach to it and individual packet
networks. In effect, IP introduces a layer that creates a network of networks in which
IP routers treat component networks as “links” that its packets must traverse. IP routers
direct the flow of packets across networks. Devices attached to the Internet convert
messages into packets and back. Indeed the key elements of the TCP/IP architecture
are captured in the Federal Networking Council (www.itrd.gov/fnc/ Internet_res.html)
definition of the term Internet as a global information system that

a. Islogically linked together by a global unique address space based on the
Internet Protocol (IP) or its subsequent extensions/follow-ons.

b. Is able to support communications using the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite or its subsequent
extenstions/follow-ons, and/or other IP-compatible protocols.

¢. Provides, uses, or makes accessible, either publicly or privately, high-level
services layered on the communications and related infrastructure described
herein.

Note that the above definition for Internet (with uppercase I) specifies both the use
of TCP/IP protocols and the use of a globally unique address space. Thus a private
internetwork that uses TCP/IP and a private address space is referred to as an internet
(with lowercase 1).

1.1 Evolution of Network Architecture and Services 21

WHAT IS A DOMAIN NAME? .

While each machine on a network has an IP address, this address usually provides
little information on the use of the machine or who its owner is. To make the addresses
more meaningful to people, host names were introduced. For example, the IP address
128.100.11.1 is not as informative as the corresponding domain name utoronto.ca,
which of course identifies a host belonging to the University of Toronto.

Today host names are determined according to the domain name system (DNS).
The system uses a hierarchical tree topology to reflect different administrative levels.
Below the root level are the familiar terms such as com, org, and edu as well as
country identifiers, such as jp and ca, for Japan and Canada, respectively. When
written linearly, the lowest level is the leftmost term. Thus, the domain name of the
Network Architecture Lab at the University of Toronto is comm.utoronto.ca, where

comm is a subdomain of utoronto.ca.

DNS is discussed further in Chapter 2.

ESSENTIAL ELEMENTS OF A NETWORK ARCHITECTURE

We have seen in this section that certain elements or functions are essential to achieve
communications, hence their presence in most modern network architectures. These
elements include the following:

1.

2.

10.

Digital transmission lines for the transfer of streams of binary information between
equipment.

Exchange of frames of information between adjacent equipment; these frames
contain delineation information as well as check bits for error control.

. Medium access control procedures to regulate the transmission of frames from

multiple users to a shared broadcast medium.

. Addresses to identify points of attachment to a network or internetwork.
. Exchange of packets of information between packet switches in a network. Routing

tables in packet switches are used to select the path of each packet as it traverses
the network.

. Dynamic calculation of routing tables at the packet switches in response to changes

in network traffic and topology.
Congestion control mechanisms may be used to prevent congestion inside the
network.

. Internetworking provides connectivity across multiple, possibly dissimilar, net-

works by using gateways or routers.

Segmentation and reassembly of messages into packets at the ingress to and egress
from the network. End-to-end error recovery mechanisms to ensure reliable transfer
across a network or internetwork.

A multiplicity of applications that build on the transfer of messages between
computers.

The above network elements can be organized in a layered fashion so that one

builds on top of another. For example, the framing element builds on top of a digital

22 CHAPTER | Communication Networks and Services

transmission to enable the transfer of blocks of information across a transmission line.
Another example involves an application building on top of a network information
service. For example, the HTTP application builds on top of TCP/IP to deliver the web-
browsing service. In Chapter 2 we develop the notion of layered network architectures
in detail.

We also saw that there are two fundamentally different approaches to communi-
cations. In the connectionless approach, the message is sent directly into the network,
and no connection needs to be set up ahead of time. Telegrams worked in this fashion,
and datagrams in computer networks work this way. The connection-oriented approach
requires that a connection be set up across equipment in the network before informa-
tion can be transferred. The telephone network provides an important example of this
approach. Interestingly the setting up of a connection involves the exchange of mes-
sages between controllers and switches and hence gives rise to the need for a computer
network to carry the signaling messages. The contrast between connectionless and
connection-oriented networks will be a recurring theme in the development of network
architectures and we will discuss the issue throughout this book.

1.2 FUTURE NETWORK ARCHITECTURES
AND THEIR SERVICES

We have summarized two centuries in the evolution of communication networks and
services and in doing so have seen that new network architectures can emerge and
obliterate old architectures. For example, the introduction of the electrical telegraph
led to the disappearance of the visual telegraph networks within a few years. We have
also seen that a new architecture can grow steadily over many decades eventually
displacing an older architecture. For example, the gradual global deployment of the
telephone network eventually led to the disappearance of telegraph networks. We are
currently experiencing a transition from a telephone-centric network architecture to a
computer-centric architecture. In this section we examine some of the factors driving
this transition.

The introduction of new applications and services is an important factor in network
evolution. Typically, many new applications and services over time build on top of the
basic network service. Facsimile transmissions of documents and data communications
using modems are two examples of services that build on top of the basic voice trans-
mission service. Other new services have resulted from leveraging the capabilities of
the telephone-signaling network. Examples include 1-800 calls, caller-id, call forward-
ing, and voice mail. Another very important example is provided by cellular telephone
services, which use the telephone-signaling infrastructure to control the connections
between users as they move within a geographical area.

The Internet has a network architecture that supports a relatively simple, but very
powerful service, the transfer of packets across many networks. This basic service al-
lows computers to exchange messages, and in so doing, enables any application that can
be implemented through the exchange of messages between computers. Applications
that are taken for granted today, e-mail for example, came into wide use only in the

1.2 Future Network Architectures and Their Services 23

recent past because of the Internet. Other applications. such as the World Wide Web and
Napster, underwent explosive growth and had dramatic impact on business, commerce,
education, and entertainment. We can expect that new generations of applications will
continue to emerge, and if found valuable, deploy rapidly in the Internet.

Applications and services that incorporate multimedia information, that is, audio,
images, and video are an important factor affecting network evolution today. The tran-
sition from analog to digital formats for multimedia information is nearly complete:
phonograph records and audiocassettes have been replaced by audio compact disks
(CDs), film cameras are being replaced by digital cameras, and analog videocassette
recorders and televisions are being replaced by digital versatile disk (DVD) recordings
and MPEG digital television. The transition from networks that transfer multimedia
information in analog form to networks that use digital means is also underway. Digi-
tal television is now distributed over cable and satellite television broadcast networks.
The exchange of JPEG digital images and MP3 digital audio over the Internet is now
commonplace. However, neither the telephone nor the Internet is capable of supporting
the real-time transter of multimedia information with high quality. This fact points to
limitations in both architectures.

The circuit-switched telephone network was designed to provide real-time voice
communications using pre-established connections. A physical circuit that bears the
voice signal in electrical form provides as instantaneous transfer as is possible, namely,
at the speed of light. The telephone network can deliver voice signals of excellent quality
across the globe. Unfortunately the telephone network is not very flexible when it comes
to handling other types of multimedia information. Specialized terminal equipment is
needed to digitize audio-visual signals and to fit them into formats that are multiples of
the 64 kbps rate of a single digital voice signal. In addition, special handling, and hence
higher cost, is involved in setting up connections for such signals across the telephone
network. For these reasons video-telephone service has never taken off.

Packet-switched networks have advantages as well as serious shortcomings in the
handling of real-time multimedia information. Packet networks are not constrained
to fixed bit-rate signals; any signal, whether audio, video, or something else, can be
digitized and packed into packets for transfer across the network. However, packet
networks can involve multiple, and usually variable, packet delays. Before a signal
is delivered delays are incurred in digitization, in filling a packet with the digitized
signal, and waiting for transmission in buffers at the packet switches in the path along
the network. Best-effort packet transfer does not distinguish between packets from
a real-time voice signal and packets from a file transfer, and so, voice packets can
encounter very large delays making real-time packet communications of voice and
other multimedia information impossible. We will see later in the book that current
changes are being introduced in the Internet architecture so that packets can be handled
with different levels of urgency and care. The support of real-time communications
over the Internet will lead not only to voice-over-Internet service, but will spur many
interesting new applications, from network games to real-time remote control of many
types.

The confluence of telephone networks and the Internet is leading to new network ar-
chitectures that combine elements from packet and circuit switching. The Asynchronous
Transfer Mode (ATM) network architecture is a major example of the combination of

24 CHAPTER 1 Communication Networks and Services

packet and circuit-switching concepts. ATM networks enable the network operator to
set up pipes that can carry either fixed or variable bandwidth traffic and to provide
delay guarantees. New protocols in Internet provide means for establishing paths for IP
packet traffic to provide delay guarantees as well as to manage traffic flows in packet
networks. These new protocols are also influencing circuit-switching networks. Opti-
cal networks that provide very high bandwidth connections between machines such as
routers operate in circuit-switched mode. In optical networks the distributed routing
methods of IP networks are being adapted to provide a means for selecting optical
paths in circuit-switched optical networks. Another major area of activity involves the
development of signaling methods for use in the Internet to provide the call services
available in the telephone network over the Internet, that is, voice telephony with call
forwarding, etc., as well as the design of gateways to enable the interworking of tele-
phone services across both networks. An especially significant application of these
new capabilities is to provide mobility and personal customization in communication
services. We examine these emerging protocols in the later part of this book.

Clearly network architectures are in a state of flux, and the reader can expect that
the next few years will be very interesting.

1.3 KEY FACTORS IN COMMUNICATION
NETWORK EVOLUTION

We have traced the evolution of communication networks from telegraphy to the emerg-
ing integrated services networks. Before proceeding with the technical details of net-
working in the remainder of the book, however, we pause to discuss factors that influence
the evolution of communication networks. Figure 1.15 shows the three traditional fac-
tors: technology, regulation, and market. To these we add standards, a set of technical
specifications followed by manufacturers or service providers, as a fourth factor.

A traditional axiom of telecommunications was that a new telecommunications
service could succeed only if three conditions were satisfied. First of all the technol-
ogy must be available to implement the service in a cost-effective manner. Second,
government regulations must permit such a service to be offered. Third, the market

FIGURE 1.15 Factors determining success
of a new service.

- .. Technology

1.3 Key Factors in Communication Network Evolution 25

for the service must exist. These three conditions were applicable in the monopoly
environment where a single provider made all the decisions regarding design and im-
plementation of the network. The move away from single providers of network services
and manufacturers of equipment made compliance with recognized standards essential.

The availability of the technology to implement a service in and of itself does
not guarantee its success. Numerous failures in new service offerings can be traced
back to the nontechnology factors. Frequently new services fall in gray areas where the
regulatory constraints are not clear. For example, most regulatory policies regarding
television broadcasting are intended for radio broadcast and cable systems; however,
it is not clear that these regulations apply to television over the Internet. Also, it is
seldom clear ahead of time that a market exists for a given new service. For example,
the deployment of videotelephony has met with failure several times in the past few
decades due to lack of market.

1.3.1 Role of Technology

Technology always plays a role in determining what can be built. The capabilities of
various technologies have improved dramatically over the past two centuries. These
improvements in capabilities have been accompanied by reductions in cost. As aresult,
many systems that were simply impossible two decades ago have become not only
feasible but also cost-effective.

Of course, fundamental physical considerations place limits on what technology
can ultimately achieve. For example, no signal can propagate faster than the speed
of light, and hence there is a minimum delay or latency in the transfer of a message
between two points a certain distance apart. However, while bounded by physical laws,
substantial opportunities for further improvement in enabling technologies remain.

The capabilities of a given technology can be traced over a period of time and found
to form an S-shaped curve, as shown in Figure 1.16a. During the initial phase the capa-
bilities of the technology improve dramatically, but eventually the capabilities saturate
as they approach fundamental limitations. An example of this situation is the capability

A A
Third class
> > . ;
= = of invention
£ £
=3 =3 Second class
@) &) of invention
Initial class of
invention
Time Time
(a) (b)

FIGURE 1.16 Capability of a technology as an S curve
(based on Martin 1977).

26 CHAPTER 1 Communication Networks and Services

of copper wires to carry information measured in bits per second. As the capabilities of
a given technology approach saturation, innovations that provide the same capabilities
but within a new technology class arise. For example, as copper wire transmission ap-
proached its fundamental limitation, the class of coaxial cable transmission emerged,
which in turn was replaced by the class of optical fiber transmission. The optical fiber
class has much higher fundamental limits in terms of achievable transmission rates and
its S curve is now only in the early phase. When the S curves for different classes of
technologies are superimposed, they form a smooth S curve themselves, as shown in
Figure 1.16b.

In discussing the evolution of network architecture in Section 1.1, we referred to
the rate curve for information transmission shown in Figure 1.1. The figure traces the
evolution from telegraphy to analog telephony, computer networks, digital telephony,
and the currently emerging integrated services networks. In the figure we also note
various milestones in the evolutiori of networking concepts. Early telegraphy systems
operated at a speed equivalent to tens of bits per second. Early digital telephone systems
handled 24 voice channels per wire, equivalent to about 1.500.000 bits per second. In
1997 optical transmissions systems could handle about 500,000 simultaneous voice
channels, equivalent to about 10'° bits per second (10 gigabits per second)! In the year
2000 systems operated at rates of 10'? bits per second (1 terabit per second) and higher!
These dramatic improvements in transmission capability have driven the evolution of
networks from telegraphy messaging to voice telephony and currently to image and
video communications.

In addition to information transmission capacity, a number of other key technolo-
gies have participated in the development of communication networks. These include
signal processing technology and digital computer technology. In particular, computer
memory capacity and computer processing capacity play a key role in the operation of
network switches and the implementation of network protocols. These two technolo-
gies have thus greatly influenced the development of networks. For more than three
decades now, computer technology has improved at a rate that every 18 to 24 months the
same dollar buys twice the performance in computer processing. computer storage. and
transmission capacity. For example, Moore’s Law states that the number of transistors
per chip doubles every 1.5 years. Figure 1.17 shows the improvement in Intel micro-
processors over the past three decades. These improvements have resulted in networks

1.OE+08 F FIGURE L17 Moore's Law:
Pentium 111 ¢® The number of transistors per chip
doubles every 1.5 years.
1.0E+07 PentiumProg ® .)
= Pentium @ Pentium [1
§ 1 0E+06 486 DX g ®Intel DX2
g
Z 1.0E+05 @ 8028¢
&= ® 3086
OE+
1.0E+04 © 5050
¢ 4004
1.0E+03 | : \
1972 1982 1992 2002

1.3 Key Factors in Communication Network Evolution 27

that not only handle greater volumes of information and greater data rates but can also
carry out more sophisticated processing and hence support a wider range of services.

The advances in core technologies in the form of higher transmission, storage, and
processing capacities are enablers to bigger and more complex systems. These advances
enable the implementation and deployment of more intelligent, software-based algo-
rithms to control and manage networks of increasingly larger scale. Major advances
in software technologies have been needed to carry out the design, development, and
testing, as well as to ensure the reliable and continued operation of these extremely
complex systems.

1.3.2 Role of Regulation

Traditional communication services in the form of telephony and telegraphy have been
government regulated. Because of the high cost in deploying the requisite infrastruc-
ture and the importance of controlling communications, governments often chose to
operate communication networks as monopolies. The planning of communication net-
works was done over time horizons spanning several decades. This planning accounted
for providing a very small set of well-defined communication services, for example,
telegraph and “plain-old telephone service” (POTS). These traditional telegraph and
telephone organizations were consequently not very well prepared to introduce new
services at a fast rate.

The last three decades have seen a marked move away from monopoly environ-
ment for communications in North America, and to a certain extent in other parts of
the world. The Carterfone decision by the U.S. Federal Communications Commission
(FCC) in 1968 opened the door for the connection of non-telephone-company tele-
phone equipment to the telephone network. The breakup in 1984 of the AT&T system
into an independent long-distance carrier and a number of independent regional tele-
phone operating companies opened the way for competition. In the United States the
Telecommunications Act of 1996 attempted to open the way to further competition in
the access portion of the telephone network. A surge in new entrants (o local telephone
access led to a boom in the growth of the telecom service and equipment industry. This
“telecom bubble” burst in 2001 and led to the catastrophic demise of most of the new
service providers. It is likely that some form of re-regulation will be reintroduced in
the United States in the coming years.

In spite of the trend towards deregulation, telecommunications will probably never
be entirely free of government regulation. For example, telephone service is now con-
sidered an essential “lifeline” service in many countries, and regulation plays a role in
ensuring that access to a minimal level of service is available to everybody. Regulation
can also play a role in addressing the issue of which information should be available to
people over a communications network. For example, many people agree that some
measures should be available to prevent children from accessing pornography over the
Internet. However, there is less agreement on the degree to which information should
be kept private when transmitted over a network. Should encryption be so secure thatno -
one. not even the government in matters of national security, can decipher transmitted
information? These questions are not easily answered. The point here is that regulation

28 CHAPTER 1 Communication Networks and Services

on these matters will provide a framework that determines what types of services and
networks can be implemented.

1.3.3 Role of the Market

The existence of a market for a new service is the third factor involved in determining
the success of a new service. This success is ultimately determined by a customer’s
willingness to pay, which, of course, depends on the cost, usefulness, and appeal of the
service. For a network-based service, the usefulness of the service frequently depends
on there being a critical mass of subscribers. For example, telephone or e-mail service
is of limited use if the number of reachable destinations is small. In addition, the cost
of a service generally decreases with the size of the subscriber base due to economies
of scale, for example, the cost of terminal devices and their components. The challenge
then is how to manage the deployment of a service to first address a critical mass and
then to grow to large scale.

As examples, we will cite one instance where the deployment to large scale failed
and another where it succeeded. In the early 1970s a great amount of investment was
made in the United States in developing the Picturephone service, which would provide
audiovisual communications. The market for such a service did not materialize. Subse-
quent attempts have also failed, and only recently are we starting to see the availability
of such a service piggybacking on the wide availability of personal computers.

As a second example, we consider the deployment of cellular radio telephony. The
service, first introduced in the late 1970s, was initially deployed as a high-end ser-
vice that would appeal to a relatively narrow segment of people who had to communi-
cate while on the move. This deployment successfully established the initial market.
The utility of being able to communicate while on the move had such broad appeal
that the service mushroomed over a very short period of time. The explosive growth
in the number of cellular telephone subscribers prompted the deployment of new wire-
less technologies.

1.3.4 Role of Standards

Standards are basically agreements, with industrywide, national, and possibly interna-
tional scope, that allow equipment manufactured by different vendors to be interoper-
able. Standards focus on interfaces that specify how equipment is physically intercon-
niected and what procedures are used to operate across different equipment. Standards
applying to datacommunications between computers specify the hardware and software
procedures through which computers can correctly and reliably “talk to one another.”
Standards are extremely important in communications where the value of a network
is to a large extent determined by the size of the community that can be reached. In
addition, the investment required in telecommunications networks is very high, and so
network operators are particularly interested in having the choice of buying equipment
from multiple. competing suppliers, rather than being committed to buying equipment
from a single supplier.

Checklist of Important Terms 29

Standards can arise in a number of ways. In the strict sense, de jure standards result
from a consultative process that occurs on a national and possibly international basis.
For example, many communication standards. especially for telephony, are developed
by the International Telecommunications Union (ITU), which is an organization that
operates under the auspices of the United Nations.® Almost every country has its own
corresponding organization that is charged with the task of setting national communica-
tion standards. In addition. some standards are set by nongovernmental organizations.
Prominent examples include the Internet Engineering Task Force (IETF), which is
responsible for the development of standards related to the Internet and the Institute
of Electrical and Electronic Engineers (IEEE) 802 committee. which specializes
in LAN/MAN? standards. While the ITU follows a more formal standardization pro-
cess, the [ETF adopts a more pragmatic approach that relies on “rough consensus and
running code.” This key difference historically has led vendors to produce interopera-
ble implementations based on IETF specifications faster. Standards may arise when a
certain product, or class of products. becomes dominant in a market. An example of
these de facto standards are personal computers based on Intel microprocessors and the
Microsoft™ Windows operating system.

The existence of standards enables smaller companies to enter large markets such
as communication networks. These companies can focus on the development of limited
but key products that are guaranteed to operate within the overall network, for example,
chips that implement certain protocols. This environment results in an increased rate
of innovation and evolution of both the technology and the standards.

On a more fundamental level. standards provide a framework that can guide the
decentralized activities of the various commercial, industrial, and governmental orga-
nizations involved in the development and evolution of networks.

CHECKLIST OF IMPORTANT TERMS

address Ethernet

analog transmission system frame

ARPANET gateway/router

best-effort service header

broadcasting : Institute of Electrical and Electronic
circuit switching Engineers (IEEE)
communication network International Telecommunications
connection-oriented Union (iTU)

connectionless packet transfer Internet Engineering Task Force (IETF)
datagram [nternet

digital transmission system internetwork or internet

Domain Name System (DNS) Internet Protocol (1P)

8The ITU was formerly known as the Consultative Committee for International Telegraphy and Telephony
(CCITT).
?A metropolitan arca network (MAN) typically covers an area of a city.

N

30 CHAPTER 1 Communication Networks and Services

local area network (LAN) statistical multiplexer/concentrator
medium access control store-and-forward

message switching telephone numbering system
multiplexing telephone service

packet telephone switch

packet switching Transmission Control Protocol (TCP)
routing transmission rate

services User Datagram Protocol (UDP)
signaling network wide area network (WAN)
FURTHER READING

“100 Years of Communications Progress,” IEEE Communications Magazine, Vol. 22, No. 5,
May 1984. Contains many excellent articles on the history of communications and predic-
tions on the future of networks.

Bylanski, P. and D. G. W. Ingram, Digital Transmission Svstems, Peter Peregrinus Ltd., England,
1980. Interesting discussion on Baudot telegraph system.

Carne, E. B.. Telecommunications Primer: Signals, Building Blocks, and Networks, Prentice-
Hall. Englewood Cliffs, New lJersey, 1995. Excellent introduction to telephone
networks.

Davies, D. W., D."L. A. Barber. W. L. Price, and C. M. Solomonides. Computer Networks and
Their Protocols, John Wiley & Sons, New York, 1979. Presents the state of the art in packet
switching in the mid-1970s.

Goralski, W. J.. Introduction to ATM Networking, McGraw-Hill, New York, 1996. Presents an
interesting discussion on the history of telegraphy and telephony.

Green, P. E.. “Computer Communications: Milestones and Prophecies,” IEEE Communications
Magazine, May 1984, pp. 49-63.

Kahn. R. E., “Resource-Sharing Computer Communication Networks,” Proceedings of the IEEE,
November 1972, pp. 1397-1407.

Leiner, B. M., V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel, L. G.
Roberts, and S. Wolff, “A Brief History of the Internet,” http://www.isoc.org/internet-history/
brief.html, May 1997. ,

Martin, J., Future Developments in Telecommunications, Prentice-Hall, Englewood Cliffs, New
Jersey, 1977. Details Martin’s vision of the future of networking; interesting to look back
and see how often his predictions were on target. ’

Perlman, R., Interconnections. Bridges, Routers, Switches, and Internet Protocols, Addison-
Wesley, Reading, Massachusetts, 2000. Excellent discussion of fundamental networking
principles.

Schwartz, M., R. R. Boorstyn, and R. L. Pickholtz, “Terminal-Oriented Computer-
Communication Networks,” Computer Networks: A Tutorial, M. Abrams, R. P. Blanc,
and I. W. Cotton, eds., [EEE Press. 1978, pp. 2-18-2-33.

Stumpers, F. L. H. M., “The History, Development, and Future of Telecommunications in
Europe,” IEEE Communications Magazine, May 1984, pp. 84-95.

RFC1160, V. Cerf, “The Internet Activities Board,” May 1990.

See our website for additional references available through the Internet.

Problems 31

PROBLEMS

1.1. (a) Describe the step-by-step procedure that is involved from the time you deposit a letter

1.2.

1.3.

14.

1.5.

1.6.

1.7.

1.8.

(b)
(c)

(a)

in a mailbox to the time the letter is delivered to its destination. What role do names,
addresses, and mail codes (such as ZIP codes or postal codes) play? How might the
letter be routed to its destination? To what extent can the process be automated?
Repeat part (a) for an e-mail message. At this point you may have to conjecture
different approaches about what goes on inside the computer network.

Are the procedures in parts (a) and (b) connection-oriented or connectionless?

Describe what step-by-step procedure might be involved inside the network in making
a telephone connection.

Now consider a personal communication service that provides a user with a personal
telephone number. When the number is dialed, the network establishes a connection
to wherever the user is located at the given time. What functions must the network
now perform to implement this service?

Explain how the telephone network might modify the way calls are handled to provide
the following services:

(a)
(b)
(c)
(d)
(a)

(b)

Call display: the number and/or name of the calling party is listed on a screen before
the call is answered.

Call waiting: a special sound is heard when the called party is on the line and another
user is trying to reach the called party.

Call answer: if the called party is busy or after the phone rings a prescribed number
of times, the network gives the caller the option of leaving a voice message.
Three-way calling: allows a user to talk with two other people at the same time.

Suppose that the letter in problem 1.1 is sent by fax. Is this mode of communications
connectionless or connection-oriented? real-time or non real-time?
Repeat part (a) for a voice-mail message left at a given telephone.

Suppose that network addresses are scarce and are assigned so that they are not globally
unique; in particular, suppose that the same block of addresses may be assigned to multiple
organizations. How can the organizations use these addresses? Can users from two such
organizations communicate with each other?

(a)

(b)

(a)

(b)

Describe the similarities and differences in the services provided by (1) a music
program delivered over broadcast radio and (2) music delivered by a dedicated
CD player.

Describe how these services might be provided and enhanced by providing them
through a communications network.

Use the World Wide Web to visit the sites of several major newspapers. How are these
newspapers changing the manner in which they deliver news services?

Now visit the websites of several major television networks. How are they changing
the manner in which they deliver news over the Internet? What differences, if any,
exist between the approaches taken by television networks and newspapers?

Discuss the advantages and disadvantages of transmitting fax messages over the Internet
instead of the telephone network.

32 "CcHAPTER I Communication Networks and Services

1.9.

1.10.

1.11

1.12.

1.13.

1.14.

1.15,

(a) Suppose that an interactive video game is accessed over a communication network.
What requirements are imposed on the network if the network is connection-oriented?
connectionless?

(b) Repeat part (a) if the game involves several players located at different sites.

(c) Repeat part (b) if one or more of the players is in motion, for example, kids in the
back of the van during a summer trip.

Discuss the similarities between the following national transportation networks and a
communications network. Is the transportation system more similar to a telephone network
or to a packet network?

(a) Railroad network.

(b) Airline network.

(c) Highway system.

(d) Combination of (a), (b), and (c).

In the 1950s standard containers were developed for the transportation of goods. These
standard containers could fit on a train car, on a truck. or in specially designed container
ships. The standard size of the containers makes it possible to load and unload them much
more quickly than non-standard containers of different sizes. Draw an analogy to packet-
switching communications networks. In your answer identify what might constitute a
container and speculate on the advantages that may come from standard-size information
containers.

The requirements of world commerce led to the building of the Suez and Panama Canals.
What analogous situations might arise in communication networks?

Two musicians located in different cities want to have a jam session over a communication
network. Find the maximum possible distance between the musicians if they are to interact
in real-time, in the sense of experiencing the same delay in hearing each other as if they
were 10 meters apart. The speed of sound is approximately 330 meters/second, and assume
that the network transmits the sound at the speed of light in cable, 2.3 x 10® meters/second.

The propagation delay is the time required for the energy of a signal to propagate from

one point to another.

(a) Find the propagation delay for a signal traversing the following networks at the speed
of light in cable (2.3 x 10% meters/second):

a circuit board 10 cm

aroom 10m

a building 100 m

a metropolitan area 100 km

a continent 5000 km

up and down to a geostationary satellite 2 x 36.000 km

(b) How many bits are in transit during the propagation delay in the above cases if bits are
entering the above networks at the following transmission speeds: 10,000 bits/second;
1 megabit/second; 100 megabits/second; 10 gigabits/second.

In problem 1.14, how long does it take to send an L-byte file and to receive a 1-byte
acknowledgment back? Let L = 1, 10, 10%, and 10° bytes. '

1.16.

1.17.

1.18.

1.19.

1.20.

Problems 33

Use your web browser to access a search engine and retrieve the article “A Brief History
of the Internet” by Leiner, Cerf, Clark, Kahn, Kleinrock, Lynch, Postel, Roberts, and
Wolff. Answer the following questions:

(a) Who was J. Licklider, and what was his “galactic network” concept?

(b) Who coined the term packet?

(¢) What (who?) is an IMP?

(d) Did the ARPANET use NCP or TCP/IP?

(e) Was packet voice proposed as an early application for Internet?

(f) How many networks did the initial IP address provide for?

Use your web browser to access a search engine and retrieve the following presentation

from the ACM 97 conference: “The Folly Laws of Predictions 1.0” by Gordon Bell.

Answer the following questions:

(a) At what rate have processing, storage, and backbone technologies improved from
1950 to 2000? How does this rate compare to advances in telephony?

(b) What is Moore’s Law?

(c) What'’s the point of making predictions?

(d) What is the difficulty in anticipating trends that have exponential growth?

(e) Who was Vannevar Bush, and why is he famous?

(f) What is the size in bytes of each frame in this presentation? What is the size in bytes
of the audio clip for a typical frame? What is the size of the video clip for a typical
scene?

The introduction of new communications services usually impacts other services through
substitution. Describe how substitution takes place in the following cases.

(a) E-mail, facsimile, and postal mail.

(b) E-mail, local, and long-distance phone service.

(¢) Cell phone, local, and long-distance phone service.

(d) Peer-to-peer file exchange and commercial CD recording.

Use your web browser to access a news website and play a news video clip. Speculate
about how the information is being transported over the Internet. How does the quality of
the audio and video compare to that of broadcast or cable television?

Use your web browser to access the [ETF web page at (currently at www.ietf.org) and
learn the Internet Standards Process documented in RFC 2026.

(a) What are the different types of Requests for Comments (RFCs)?

(b) What is an Internet Draft?

(c) What are the differences among Proposed Standard, Draft Standard, and Standard?
(d) Which group in the IETF approves a certain specification for standard-track?

(e) How are disputes on working group documents resolved?

CHAPTER 2

Applications and Layered Architectures

architecture, n. Any design or orderly arrangement perceived by man.
design, n. The invention and disposition of the forms, parts, or details of something accord-
ing to a plan."

Communication networks can be called upon to support an extremely wide range of
services. We routinely use networks to talk to people, to send e-mail, to transfer files,
and to retrieve information. Business and industry -use networks to carry out critical
functions, such as the transfer of funds and the automated processing of transactions, and
to query or update database information. Increasingly, the Internet is also being used to
provide “broadcast” services along the lines of traditional radio and television. It is clear
then that the network must be designed so that it has the flexibility to provide support
for current services and to accommodate future services. To achieve this flexibility, an
overall network architecture or plan is necessary.

The overall process of enabling two or more devices to communicate effectively
across a network is extremely complex. In Chapter | we identified the many elements of
anetwork that are required to enable effective communication. Early network designers
recognized the need to develop architectures that would provide a structure to organize
these functions into a coherent form. As a result, in the early 1970s various computer
companies developed proprietary network architectures. A common feature to all of
these was the grouping of the communication functions into related and manageable
sets called layers. We saw in Chapter 1 that communication functions can be grouped
according to the following tasks:

* The transport across a network of data from a process in one machine to the process
at another machine.

'Definitions are from The American Heritage Dictionary of the English Language, Houghton Mifflin Co.,
1978.

34

Applications and Layered Architectures 35

* The routing and forwarding of packets across multiple hops in a network.
« The transfer of a frame of data from one physical interface to another.

These layers of functions build on top of each other to enable communications. We
use the term network architecture to refer to a set of protocols that specify how every
layer is to function.

The decomposition of the overall communications problem into a set of layers is
a first step to simplifying the design of the overall network. In addition the interaction
between layers needs to be defined precisely. This is done through the definition of
the service provided by each layer to the layer above, and through the definition of
the interface between layers through which a service is requested and through which
results are conveyed. A clearly defined service and interface allows a layer to invoke a
service from the layer below without regard to how the service is implemented by any
of the layers below. As long as the service is provided as specified, the implementation
of the underlying layers can be changed. Also, new services that build on existing
services can be introduced at any time, and in turn enable other new services at layers
above. This provides flexibility in modifying and evolving the network. In contrast, a
monolithic network design that uses a single large body of hardware and software to
meet all the network requirements can quickly become obsolete and also is extremely
difficult and expensive to modify. The layered approach accommodates incremental
changes much more readily.

In this chapter we develop the notion of a layered architecture, and we provide
examples from TCP/IP, the most important current network architecture. The discussion
is organized as follows:

1. Web-browsing and e-mail applications are used to demonstrate the operation of a
protocol within a layer and how it makes use of the communication services of the
layer below. We introduce the HTTP, DNS, and SMTP application layer protocols
in these examples. .

2. The Open Systems Interconnection (OSI) reference model is discussed to show how
the overall communication process can be organized into functions that are carried
out in seven layers.

3. The TCP/IP architecture is introduced and compared to the OSI reference model.
We present a detailed end-to-end example in a typical TCP/IP Internet. We use a
network protocol analyzer to show the exchange of messages and packets in real
networks. This section is key to seeing the big picture because it shows how all the
layers work together.

Two optional sections present material that is useful in developing lab exercises
and experiments involving TCP/IP:

4. We introduce Berkeley sockets, which allow the student to write applications that
use the services provided by the TCP/IP protocols. We develop example programs
that show the use of UDP and TCP sockets.

5. We introduce several important TCP/IP application layer protocols: Telnet, FTP, and
HTTP. We also introduce several utilities and a network protocol analyzer that can
be used as tools to study the operation of the Internet.

36 CHAPTER 2 Applications and Layered Architectures

2.1 EXAMPLES OF PROTOCOLS, SERVICES,
AND LAYERING

A protocol is a set of rules that governs how two or more communicating parties are to
interact. When dealing with networks we run into a multiplicity of protocols, such as
HTTP, FTP, and TCP. The purpose of a protocol is to provide some type of communica-
tion service. For example, the HTTP protocol enables the retricval of web pages, and the
TCP protocol enables the reliable transfer of streams of information between computers.
In this chapter, we will see that the overall communications process can be organized
into a stack of layers. Each layer carries out a specific set of communication functions
using its own protocol, and each layer builds on the services of the layer below it.

This section uses concrete examples to illustrate what is meant by a protocol and
to show how two adjacent layers interact. Together the examples also show the advan-
tages of layering. The examples use two familiar applications, namely, e-mail and Web
browsing. We present a simplified discussion of the associated protocols. Our purpose
here is to relate familiar applications to the underlying network services that are the
focus of this textbook.

2.1.1 HTTP, DNS, and SMTP

All the examples discussed in this section involve a client/server application. A server
process in a computer waits for incoming requests by listening to a port. A port is
an address that identifies which process is to receive a message that is delivered to a
given machine. Widely used applications have well-known port numbers assigned to
their servers, so that client processes in other computers can readily make requests as
required. The servers provide responses to those requests. The server software usually
runs in the background and is referred to as a daemon. For example, hr = pa refers to
the server daemon for HTTP.

IDGNIIGBON HTTP and Web Browsing

Let us consider an example of browsing through the World Wide Web (WWW). The
WWW consists of a framework for accessing documents that are located in computers
connected to the Internet. These documents are prepared using the HyperText Markup
Language (HTML) and may consist of text, graphics, and other media and are inter-
connected by links that appear within the documents. The WWW is accessed through a
browser program that displays the documents and allows the user to access other doc-
uments by clicking one of these links. Each link provides the browser with a uniform
\resource locator (URL) that specifies the name of the machine where the document is
located as well as the name of the file that contains the requested document. ’
The HyperText Transfer Protocol (HTTP) specifies rules by which the client and
server interact so as to retrieve a document. The rules also specify how the request and
response are phrased. The protocol assumes that the client and server can exchange

2.1 Examples of Protocols, Services, and Layering 37

The user clicks on a link to indicate which document is to
be retrieved. The browser must determine the Internet
address of the machine that contains the document. To do
so, the browser sends a query to its local name server.

Once the address is known, the browser establishes a
connection to the server process in the specified machine,
usually a TCP connection. For the connection to be
successful, the specified machine must be ready to accept
TCP connections.

The browser runs a client version of HTTP, which issues a
4 request specifying both the name of the document and the
possible document formats it can handle. -

The machine that contains the requested document runs a server
= version of HTTP. It reacts to the HTTP request by sending an

| HTTP response which contains the desired

document in the appropriate format.

The user may start to view the document. The TCP '
connection is closed after a certain timeout period.

FIGURE 2.1 Retrieving a document from the web.

messages directly. In general, the client software needs to set up a two-way connection
prior to the HTTP request. ‘

Figure 2.1 and Table 2.1 show the sequence of events and messages that are in-
volved in retrieving a document. In step 1 a user selects a document by clicking on its
corresponding link. For example, the browser may extract the URL associated with the
following link:

http://www.comm.utoronto.ca/comm.html

The client software must usually carry out a Domain Name System (DNS) query to
determine the IP address corresponding to the host name, www.comm.utoronto.ca. (We
discuss how this query is done in the next example.) The client software then sets up a
TCP connection with the WWW server (the default is port 80) at the given IP address
(step 2). The client end identifies itself by an ephemeral port number that is used only
for the duration of the connection. The TCP protocol provides a reliable byte-stream
transfer service that can be used to transmit files across the Internet.

After the connection is established, the client uses HTTP to request a document
(step 3). The request message specifies the method or command (GET), the document
(comm.html), and the protocol version that the browser is using (HTTP/1.1). The server
daemon identifies the three components of the message and attempts to locate the file
(step 4).

38 CHAPTER2 Applications and Layered Architectures

TABLE 2.1 Retrieving a document from the web: HTTP message exchange.

Event Message Content

1. User selects document.

2. Network software of client locates the”
server host and establishes a two-way
connection. .

3. HTTP client sends message requesting ~GET /comm.html HTTP/1.1
document.

4. HTTP daemon listening on TCP port

80 interprets message.

5. HTTP daemon sends a result code and HTTP/1.1 200 OK
a description of the informationthat =~ Date: Mon, 06 Jan 2003 23:56:44 GMT
the client will receive. Server: Apache/1.3.23 (Unix)

Last Modified: 03 Sep 2002 02:58:36 GMT
Content-Length: 8218
Content-Type: text/html
6. HTTP daemon reads the file and sends <html>
requested file through the TCP port. <head><title></title>...
What is
Communications?
7. Text is displayed by client browser,
which interprets the HTML format.
8. HTTP daemon disconnects the
connection after the connection is
idle for some timeout period.

In step 5 the daemon sends a status line and a description of the information
that it will send. Result code 200 indicates that the client request was successful and
that the document is to follow. The message also contains information about the server
software, the length of the documeént (8218 bytes), and the content type of the document
(text/html). If the request was for an image, the type might be image/gif. If the request
is not successful, the server sends a different result code, which usually indicates the
type of failure, for example, 404 when a document is not found.

In step 6 the HTTP daemon sends the file over the TCP connection. In the mean-
time, the client receives the file and displays it (step 7). The server maintains the TCP
connection opei so it can accept additional requests from the client. The server closes’
the TCP connection if it remains idle for some timeout period (step 8).

The HTTP example clearly indicates that a protocol is solely concerned with the
interaction between the two peer processes, that is, the client and the server. The protocol
assumes that the message exchange between peer processes occurs directly as shown in
Figure 2.2. Because the client and server machines are not usually connected directly,
a connection needs to be set up between them. In the case of HTTP, we require a
two-way connection that transfers a stream of bytes in correct sequential order and
without errors. The TCP protocol provides this type of communication service between
two processes in two machines connected to a network. Each HTTP process inserts its

2.1 Examples of Protocols, Services, and Layering 39

FIGURE 2.2 HTTP client/server
interaction.

HTTP GET —— HTTP
client | <«— STATUS server

messages into a buffer, and TCP transmits the contents of the buffer to the other TCP in
blocks of information called segments, as shown in Figure 2.3. Each segment contains
port number information in addition to the HTTP message information. HTTP is said
10 use the service provided by TCP in the layer below. Thus the transfer of messages
between HTTP client and server in fact is virtual and occurs indirectly via the TCP
connection as shown in Figure 2.3. Later you will see that TCP, in turn, uses the service
provided by IP.

It is worth noting exactly how the HTTP application protocol invokes the service
provided by TCP. When the HTTP client software first needs to set up the TCP con-
nection, the client does so by making a series of socket system calls. These calls are
similar to function calls except that control is passed to the operating system kernel
when a socket system call is made. A socket system call specifies a certain action and
may contain parameters such as socket type, for example, TCP or UDP, and address
information. Thus the interaction between the HTTP layer and the TCP layer takes
place through these socket system calls.?

IOV 4NN DNS Query

The HTTP example notes that the client first needs to perform a DNS query to obtain
the IP address corresponding to the domain name. This step is done by sending a

2Sockets are explained in detail in Section 2.4.

FIGURE 2.3 TCP provides a
HTTP [----=—==-=--- > HITP pipe between the HTTP client and
client [q(=====-==—-—-—- server HTTP server.

Ephemeral

POTL# gyt Port 80

[cer [so¢ |

[#.80 [STATUS|

40 CHAPTER2 Applications and Layered Architectures

message to a DNS server. The Domain Name System (DNS) is a distributed database
that resides in multiple machines on the Internet and is used to convert between names
and addresses and to provide e-mail routing information. Each DNS machine maintains
its own database and acts as a DNS server that other machines can query. Typically |
the requesting machine accesses 4 local name server, which, for example, may reside -
in a university department or at an ISP. These local name servers are able to resolve
frequently used domain names into the corresponding IP addresses by caching recent
information. When unable to resolve a name, the local name server may sometimes send
aquery to a root name server, of which there are currently 13 distributed globally. When
a root server is unable to determine an IP address, it sends a query to an authoritative
name server. Every machine on the Internet is required to register with at least two
authoritative name servers. If a given name server cannot resolve the domain name, the
queried name server will refer to another name server, and this process continues until
a name server that can resolve the domain name is found.

We now consider a simple case where the resolution takes place in the first server.
Table 2.2 shows the basic steps required for this example. After receiving the ad-
dress request, a process in the host, called the resolver, composes the short mes-
sage shown in step 2. The OPCODE value in the DNS message header indicates
that the message is a standard query. The question portion of the query contains
the following information: QNAME identifies the domain name that is to be trans-
lated. The DNS server can handle/a variety of queries, and the type is specified by
QTYPE. In the example, QTYPE = A requests a translation of a name to an IP
address. QCLASS requests an Internet address (some name servers handle non-IP
addresses). In step 3 the resolver sends the message to the local server using the data- -
gram communication service UDP,) Ry

"TABLE 2.2 DNS query and response.

Event Message content
1. Application requests name to address
translation.

2. Resolver composes query message. Header: OPCODE=SQUERY
. Question:
ONAME=tesla.comm.toronto.edu.,
oo QCLASS=IN, QTYPE=A
3. Resolver sends UDP datagram :
encapsulating the query message.”
/4. DNS server looks up address and Header: OPCODE=SQUERY,
" prepares response. 7 RESPONSE, AA
' T 7 - o-—-Question: QNAME=
tesla.comm.toronto.edu.,
QCLASS=IN, QTYPE=A
Answer: tesla.comm.toronto.edu.
86400 IN A 128.100.11.1
5. DNS sends UDP datagram encapsulating the
response message.

2.1 Examples of Protocols, Services, and Layering 41

The short message returned by the server in step 4 has the Response and Authori-

 tative Answer bits set in the header. This setting indicates that the response comes from
an authority that manages the domain name. The question portion is identical to that

“of the query. The answer portion contains the domain name for which the address is
provided. This portion is followed by the Time-to-Live field, which specifies the time

“in units of seconds that this information is to be cached by the client. Next are the
two values for QCLASS and QTYPE. IN again indicates that it is an Internet address.
Finally, the IP address of the domain name is given (128.100.11.1). ,

In this example the DNS query and response messages are transmitted by using the
communication service provided by the User Datagram Protocol (UDP). The UDP
client attaches a header to the user information to provide port information (port 53 for
DNS) and encapsulates the resulting block in an IP packet. The UDP service is connec-
tionless; no connection setup is required, and the datagram can be sent immediately.
Because DNS queries and responses consist of short messages, UDP is ideally suited
for conveying them.

The DNS example shows again how a protocol, in this case the DNS query protocol,
is solely concerned with the interaction between the client and server processes. The
example also shows how the transfer of messages between client and server, in fact, is
virtual and occurs indirectly via UDP datagrams.

IDGWIIYRON SMTP and E-mail

Finally, we consider an e-mail example, using the Simple Mail Transfer Protocol
(SMTP). Here a mail client application interacts with a local SMTP server to initiate
the delivery of an e-mail message. The user prepares an e-mail message that includes
the recipient’s e-mail address, a subject line, and a body. When the user clicks Send, the
mail application prepares a file with the above information and additional information
specifying format, for example, plain ASCII or Multipurpose Internet Mail Extensions
(MIME) to encode non-ASCII information. The mail application has the name of the
local SMTP server and may issue a DNS query for the IP address. Table 2.3 shows the
remaining steps involved in completing the transfer of the e-mail message to the local
SMTP server.)) -

Before the e-mail message can be transferred, the application process must set up
a TCP connection to the local SMTP server (step 1). Thereafter, the SMTP protocol
is used in a series of exchanges in which the client identifies itself, the sender of the
e-mail, and the recipient (steps 2-8). The client then transfers the message that the
SMTP server accepts for delivery (steps 9-12) and ends the mail session. The local
SMTP server then repeats this process with the destination SMTP server. To locate
the destination SMTP server, the local server may have to perform a DNS query of
type MX (mail exchange). SMTP works best when the destination machine is always
available. For this reason, users in a PC environment usually retrieve their e-mail from
a mail server using the Post Office Protocol version 3 (POP3) instead.

42 CHAPTER 2 Applications and Layered Architectures

TABLE 2.3 Sending e-mail.

Event

Message content

1. The mail application establishes a
TCP connection (port 25) to its local
SMTP server.

2. SMTP daemon issues the following message
to the client, indicating that it is ready to
receive mail.

3. Client sends a HELO message and identifies
itself.

4. SMTP daemon issues a 250 message,
indicating the client may proceed.

S. Cliem sends sender’s address.

6. If successful, SMTP daemon replies with a
250 message.

7. Client sends recipient’s address.

8. A 250 message is returned.

9. Client sends a DATA message requesting
permission to send the mail message.
10. The daemon sends a message giving the client
permission to send.
11. Client sends the actual text.

12. Daemon indicates that the message is accepted
for delivery. A message ID is returned.

13. Client indicates that the mail session is over.

14. Daemon confirms the end of the session.

220 tesla.comm.toronto.edu ESMTP
Sendmail 8.9.0/8.9.0; Thu,
2 Jul 1998 05:07:59 -0400 (EDT)
HELO bhaskara.comm.utoronto.ca

250 tesla.comm.toronto.edu Hello
bhaskara.comm [128.100.10.9],
pleased to meet you

MAIL FROM:

. <banerjea@comm.utoronto.ca>

250 <banerjea@comm.utoronto.ca> ..
Sender ok

RCPT TO: <alg@nal.utoronto.ca>

250 <alg@nal.utoronto.ca> ...
Recipient ok)

DATA

354 Enter mail, end with "." on
a line by itself

Hi al,

This section on email sure needs
a lot of work... “—— o

250 FAAQ00803 Message accepted for
delivery :

QUIT

221 tesla.comm.toronto.edu
closing connection

2.1.2 TCP and UDP Transport Layer Services

The e-mail, DNS query, and HTTP examples show how multiple protocols can operate
by using the communication services provided by the TCP and UDP protocols. Both
the TCP and UDP protocols operate by using the connectionless packet network service
provided by IP.

UDP provides connectionless transfer of datagrams between processes in hosts
attached to the Internet. UDP provides port numbering to identify the source and des-
tination processes in each host. UDP is simple and fast but provides no guarantees in
terms of delivery or sequence addressing.

TCP provides for reliable transfer of a byte stream between processes in hosts
attached to the Internet. The processes write bytes into a buffer for transfer across
the Internet by TCP. TCP is considerably more complex than UDP. TCP involves the
establishment of a connection between the two processes. To provide their service,

2.2 The OSI Reference Model 43

the TCP entities implement error detection and retransmission as well as flow control
algorithms (discussed in Chapters 5 and 8). In addition, TCP also implements congestion
control, which regulates the flow of segments into the network. This topic is discussed
in Chapters 7 and 8.

Indeed, an entire suite of protocols has been developed to operate on top of TCP and
UDP, thereby demonstrating the usefulness of the layering concept. New services can
be quickly developed by building on the services provided by existing layer protocols.

PEER-TO-PEER FILE SHARING

File-sharing applications such as Napster and Gnutella became extremely popular
as a means of exchanging MP3 audio and other files. The essence of these peer-to-
peer applications is that ordinary PCs (“peers™) attached to the Internet can act not
only as clients, but also as transient file servers while the applications are activated.
When a peer is interested in finding a certain file, it sends a query. The response
provides a list of peers that have the file and additional information such as the speed
of each peer’s connection to the Internet. The requesting peer can then set up a TCP
connection to one of the peers in the list and proceed to retrieve the file.

The technically difficult part in peer-to-peer file sharing is maintaining the
database of peers that are connected at a given point in time and the files that they
have available for sharing. The Napster approach used a centralized database that
peers could contact when they became available for file sharing and/or when they
needed to make a query. The Gnutella approach uses a distributed approach where
the peers organize themselves into an overlay network by keeping track of peers that
are assigned to be adjacent to them. A query from a given peer is then broadcast
by sending the query to each neighbor, their neighbors’ neighbors, and so on up to
some maximum number of hops.

Peer-to-peer file sharing provides another example of how new services and
applications can be deployed very quickly over the Internet. Peer-to-peer file sharing
also brings up many legal, commercial, and cultural issues that will require many
years to resolve. ‘

2.2 THE OSI REFERENCE MODEL

The early network architectures developed by various computer vendors were not
compatible with each other. This situation had the effect of locking in customers with
a single vendor. As a result, there was pressure in the 1970s for an open systems archi-
tecture that would eventually lead to the design of computer network equipment that
could communicate with each other. This desire led to an effort in the International
Organization for Standardization (ISO) first to develop a reference model for open
systems interconnection (OSI) and later to develop associated standard protocols. The
OSI reference model partitioned the communications process into seven layers and

44 CHAPTER 2 Applications and Layered Architectures

provided a framework for talking about the overall communications process and hence
was intended to facilitate the development of standards. The OSI work also provided a
unified view of layers, protocols and services. This unified view has provided the basis
for the development of networking standards to the present day.

2.2.1 The Seven-Layer OSI Reference Model

_Consider an application that involves communications between a process in computer A
and a process in computer B. The OSI reference model divides the basic communi-
cation functions required for computers A and B to communicate into the seven layers
shown in Figure 2.4. In this section, we will discuss the functions of the seven layers
starting from the bottom (physical layer) to the top (application layer). The reader should
compare the definition of the OSI layers to the elements described for the telegraph,
telephone, and computer network architectures discussed in Chapter 1.

The physical layer deals with the transfer of bits over a communication channel,
for example, the digital transmission system and the transmission media such as copper
wire pairs, coaxial cable, radio, or optical fiber. The layer is concerned with the partic-
ular choice of system parameters such as voltage levels and signal durations. The layer
18 also concerned with the procedures to set up and release the physical connection, as
well as with mechanical aspects such as socket type and number of pins. For exam-
ple, an Ethernet physical layer standard defines the connector and signal interfaces in
a PC.

Application A ~— > Application B
Application | Application
layer layer

N Session
- layer
ey Tmnspoft
Communication network layer . .-
4) —=
Network _ — Network | > Network _ _ Network
layer layer layer o layer
Dataliok | | | Datink || Dawlink |_| | Damlinks
layer . layer layer = | layer .
Physical |_ Physical |_ o | Physical |_ Physical
layer layer N o layer layer
- i T 1 T]

Electrical and/or optical signals

FIGURE 2.4 The seven-layer OSI reference model.

2.2 The OSI Reference Model 45

The data link layer provides for the transfer of frames (blocks of information)
across a transmission link that directly connects two nodes. The data link layer inserts
framing information in the sequence of transmitted bits to indicate the boundaries of
the frames. It also inserts control and address information in the header and check
bits to enable recovery from transmission errors, as well as flow control. The data link
control is particularly important when the transmission link is prone to transmission
errors. Historically, the data link layer has included the case where multiple terminals
are connected to a host computer in point-to-multipoint fashion. In Chapter 5 we will
discuss High-level Data Link Control (HDLC) protocol and Point-to-Point Protocol
(PPP), which are two standard data link controls that are in wide use.

The OSI data link layer was defined so that it included the functions of LANS,
which are characterized by the use of broadcast transmissions. The notion of a “link,”
then, includes the case where muitiple nodes are connected to a broadcast medium.
As before, frames flow directly between nodes. A medium access control procedure
is required to coordinate the transmissions from the machines into the medium. A flat
addressing space is used to enable machines to listen and recognize frames that are
destined to them. Later in this chapter we will discuss the Ethernet LAN standard.

The network layer provides for the transfer of data in the form of packets across a
communication network. One key aspect of the network layer is the use of a hierarchical
addressing scheme that identifies the point of attachment to the network and that can
accommodate a large number of network users. A key aspect of the packet transfer
service is the routing of the packets from the source machine to the destination machine,
typically traversing a number of transmission links and network nodes where routing
is carried out. By routing protocol we mean the procedure that is used to select paths
across a network. The nodes in the network must work together to perform the routing
effectively. This function makes the network layer the most complex in the reference
model. The network layer is also responsible for dealing with the congestion that occurs
from time to time due to temporary surges in packet traffic.

When the two machines are connected to the same packet-switching network as in
Figure 2.5, a single address space and routing procedure are used. However, when the
two machines are connected to different networks, the transfer of data must traverse
two or more networks that possibly differ in their internal routing and addressing

PS = packet switch FIGURE 2.5 A packet-switching
H = host network using a uniform routing
procedure.

46 CHAPTER2 Applications and Layered Architectures

G = gateway/router
H = host

FIGURE 2.6 An internetwork.

scheme. In this case internetworking protocols are necessary to route the data between
gateways/routers that connect the intermediate networks, as shown in Figure 2.6. The
internetworking protocols must also deal with differences in addressing and differences
in the size of the packets that are handled within each network. This internet sublayer
of the network layer assumes the responsibility for hiding the details of the underlying
network(s) from the upper layers. This function is particularly important given the large
and increasing number of available network technologies for accomplishing packet
transfer. ,

As shown in Figure 2.4, each intermediate node in the network must implement
the lower three layers. Thus one pair of network layer entities exists for each hop of the
path required through the network. Note that the network layer entities in the source
and destination machines are not peer processes, that is, if there are intermediate nodes
between them, they do not talk directly to each other.

The transport layer is responsible for the end-to-end transfer of messages from
a process in the source machine to a process in the destination machine. The transport
layer protocol accepts messages from its higher layers and prepares blocks of informa-
tion called segments or datagrams for transfer between end machines. The transport
layer uses the services offered by the underlying network or internetwork to provide
the session layer with a transfer of messages that meets a certain quality of service. The
transport layer can provide a variety of services. At one extreme the transport layer may
provide a connection-oriented service that involves the error-free transfer of a sequence
of bytes or messages. The associated protocol carries out error detection and recovery,
and sequence and flow control. At the other extreme the transport layer may instead
provide an unconfirmed connectionless service that involves the transfer of individual
messages. In this case the role of the transport layer is to provide the appropriate ad-
dress information so that the messages can be delivered to the appropriate destination
process. The transport layer may be called upon to segment messages that are too long

2.2 The OSI Reference Model 47

into shorter blocks of information for transfer across a network and to reassemble these
messages at the destination.

In TCP/IP networks, processes typically access the transport layer through socket
interfaces that are identified by a port number. We discuss the socket interface in the
Berkeley UNIX application programming interface (API) in an optional section later
in this chapter.

The transport layer can be responsible for setting up and releasing connections
across the network. To optimize the use of network services, the transport layer may
multiplex several transport layer connections onto a single network layer connection. On
the other hand, to meet the requirements of a high throughput transport layer connection,
the transport layer may use splitting to support its connection over several network layer
connections.

Note from Figure 2.4 that the top four layers are end to end and involve the inter-
action of peer processes across the network. In contrast the lower two layers of the OSI
reference model involve interaction of peer-to-peer processes across a single hop.

The session layer can be used to control the manner in which data are exchanged.
For example, certain applications require a half-duplex dialog where the two parties
take turns transmitting information. Other applications require the introduction of syn-
chronization points that can be used to mark the progress of an interaction and can
serve as points from which error recovery can be initiated. For example, this type of
service may be useful in the transfer of very long files over connections that have short
times between failures.

The presentation layer is intended to provide the application layer with indepen-
dence from differences in the representation of data. In principle, the presentation layer
should first convert the machine-dependent information provided by application A into
a machine-independent form, and later convert the machine-independent form into a
machine-dependent form suitable for application B. For example, different computers
use different codes for representing characters and integers, and also different conven-
tions as to whether the first or last bit is the most significant bit.

Finally, the purpose of the application layer is to provide services that are fre-
quently required by applications that involve communications. In the WWW example
the browser application uses the HTTP application-layer protocol to access a WWW
document. Application layer protocols have been developed for file transfer, virtual ter-
minal (remote log-in), electronic mail, name service, network management, and other
applications.

In general each layer aads a header, and possibly a trailer, to the block of information
itaccepts from the layer above. Figure 2.7 shows the headers and trailers that are added as
a block of application data works its way down the seven layers. At the destination each
layer reads its corresponding header to determine what action to take and it eventually
passes the block of information to the layer above after removing the header and trailer.

In addition to defining a reference model, an objective of the ISO activity was the
development of standards for computer networks. This objective entailed specifying the
particular protocols that were to be used in various layers of the OSI reference model.
However, in the time that it took to develop the OSI protocol standards, the TCP/IP net
work architecture emerged as an alternative for open systems interconnection. The free
distribution of TCP/IP as part of the Berkeley UNIX® ensured the development of

48 CHAPTER 2 Applications and Layered Architectures

Application A Data l[> Application B

Application [l ah | __ | Application
1] Iz
ayer i ayer
Presentation v hl _ | Presentation
1 [: I Ph
ayer s layer
Session HE l Session
layer [M l sh layer

Jranspart 1 I | th }————» Transport
layer I S - layer
Network A Network
layer [S S [nh layer
~ Datalink I R S S Data link
layer Lat] L b e layer

Physical - i Physical
layer [Bits layer

[]

FIGURE 2.7 Headers and trailers are added to a block of data as 1t moves
down the layers.

numerous applications at various academic institutions and the emergence of a market
for networking software. This situation eventually led to the development of the global
Internet and to the dominance of the TCP/IP network architecture."

2.2.2 Unified View of Layers, Protocols, and Services

A lasting contribution from the development of the OSI reference model was the de-
velopment of a unified view of layers, protocols, and services. Similar requirements
occur at different layers in a network architecture, for example, in terms of addressing,
multiplexing, and error and flow control. This unified view enables a common under-
standing of the protocols that are found in different layers. In each layer a process on one
machine carries out a conversation with a peer process on the other machine across a
peer interface, as shown in Figure 2.8.% In OSI terminology the processes at layer n are
referred to as layer n entities. Layer n entities communicate by exchanging protocol
data units (PDUs). Each PDU contains a header, which contains protocol control in-
formation, and usually user information. The behavior of the layer n entities is governed
by a set of rules or conventions called the layer n protocol. In the HTTP example the
HTTP client and server applications acted as peer processes. The processes that carry

3Peer-to-peer protocols are present in every layer of a network architecture. In Chapter S we present detailed
examples of peer-to-peer protocols.

2.2 The OSI Reference Model 49

Peer interface FIGURE 2.8 Peer-to-peer
n-PDUs communication.

Layern [:D_> Layer n

A T N T

: FIGURE 2.9 Layer services: SDUs are
Layer feceem— e »i Layer) ‘ o
a+1 Peer interface exchanged between layers while PDUs
entity [-———~------ b i are exchanged within a layer.

Service interface

Layer n > Layern
entity entity
n-PDU

out the transmitter and receiver functions of TCP also constitute peer processes at the
layer below.

The communication between peer processes is usually virtual in the sense that no
direct communication link exists between them. For communication to take place, the
layer n+ | entities make use of the services provided by layer n. The transmission of
the layer n+ 1 PDU is accomplished by passing a block of intormation from layer
n+ 1 to layer n through a software port called the layer n service access point (SAP)
across a service interface, as shown in Figure 2.9. Each SAP is identified by a unique
identifier (for example, recall that a WWW server process passes information to a TCP
process through a Transport-SAP or port number 80). The block of information passed
between layer n and layer n + 1 entities consists of control information and a layer n
service data unit (SDU), which is the layer n+ 1 PDU itself. The layer n entity uses
the control information to form a header that is attached to the SDU to produce the layer
n PDU. Upon receiving the layer n PDU, the layer n peer process uses the header to
execute the layer n protocol and, if appropriate, to deliver the SDU to the corresponding
layer n + 1 entity. The communication process is completed when the SDU (layern + 1
PDU) is passed to the layer n+ 1 peer process.*

In principle, the layer n protocol does not interpret or make use of the information
contained in the SDU.5 We say that the layer n SDU, which is the layer n+ 1 PDU,
is encapsulated in the layer n PDU. This process of encapsulation narrows the scope
of the dependencies between adjacent layers to the service definition only. In other

41t may be instructive to reread this paragraph where a DNS query message constitutes the layern+ 1 PDU
and a UDP datagram constitutes the layer n PDU.
50n the other hand, accessing some of the information “hidden” inside the SDU can sometimes be useful.

50 CHAPTER2 Applications and Layered Architectures

words, laver n + I, as a user of the service provided by layer n, is only interested in
the correct execution of the service required to transfer its PDUs. The details of the
implementation of the lavers below laver n + I are irrelevant.

The service provided by layer n typically involves accepting a block of information
from layer n + |, transferring the information to its peer process, which in turn delivers
the block to the user at layer n+ I. The service provided by a layer can be connection
oriented or connectionless. A connection-oriented service has three phases.

1. Establishing a connection between two layer n SAPs. The setup involves negotiating
connection parameters as well as initializing “state information™ such as the sequence
numbers, flow tontrol variables, and buffer allocations.

2. Transferring n-SDUs using the layer n protocol.

3. Tearing down the connection and releasing the various resources allocated to the
connection.

In the HTTP example in Section 2.1, the HTTP client process uses the connection
services provided by TCP to transfer the HTTP PDU, which consists of the request
message. A TCP connection is set up between the HTTP client and server processes,
and the TCP transmitter/receiver entities carry out the TCP protocol to provide a reliable
message stream service for the exchange of HTTP PDUs. The TCP connection is later
released after one or more HTTP responses have been received.

Connectionless service does not require a connection setup, and each SDU is
transmitted directly through the SAP. In this case the control information that is passed
from layer n + [to layer n must contain all the address information required to transfer
the SDU. In the DNS example in Section 2.1, UDP provides a connectionless service
for the exchange of DNS PDUs. No connection is established between the DNS client
and server processes.

In general, it is not necessary for the layers to operate in the same connection
mode. Thus for example. TCP provides a connection-oriented service but builds on the
connectionless service provided by IP.

The services provided by a layer can be confirmed or unconfirmed depending
on whether the sender must eventually be informed of the outcome. For example,
connection setup is usually a confirmed service. Note that a connectionless service can
be confirmed or unconfirmed depending on whether the sending entity needs to receive
an acknowledgment.

Information exchanged between entities can range from a few bytes to multi-
megabyte blocks or continuous byte streams. Many transmission systems impose a
limit on the maximum number of bytes that can be transmitted as a unit. For example,
Ethernet LANSs have a maximum transmission size of approximately 1500 bytes. Con-
sequently, when the number of bytes that needs to be transmitted exceeds the maximum
transmission size of a given layer, it is necessary to divide the bytes into appropriate-
sized blocks.

In Figure 2.10a a layer n SDU is too large to be handled by the layer n — 1, and so
segmentation and reassembly are applied. The layer n SDU is segmented into multiple
layer n PDUs that are then transmitted using the services of layer n — 1. The layer n
entity at the other side must reassemble the original layer n SDU from the sequence of
layer n PDUs it receives.

2.2 The OSI Reference Model 51

Segmentation Reassembly

n-SDU
(\

[o-PDU | | n-PDU | [o-pDU | [o-PDU | | n-PDU |

(b)

Blocking Unblocking
[n-spu | [a-spU | | n-SDU] [a-spu | [a-sDU | [n-spu |
]
n-PDU n-PDU

FIGURE 2.10 Segmentation/reassembly and blocking/unblocking.

On the other hand, it is also possible that the layer n SDUs are so small as to result
in inefficient use of the layer n — 1 services, and so blocking and unblocking may be
applied. In this case, the layer n entity may block several layer n SDUs into a single
layer n PDU as shown in Figure 2.10b. The layer n entity on the other side must then
unblock the received PDU into the individual SDUs.

Multiplexing involves the sharing of a layer n service by multiple layern + 1 users.
Figure 2.11 shows the case where each layern + 1 user passes its SDUs for transfer using
the service of a single layer n entity. Demultiplexing is carried out by the layern entity at
the other end. When the layer n PDUs arrive at the other end of the connection, the SDUs
are recovered and must then be delivered to the appropriate layer n+ 1 user. Clearly a
multiplexing tag is needed in each PDU to determine which user an SDU belongs to.
As an example consider the case where several application layer processes share the

FIGURE 2.11 Multiplexing

L e > nt+l involves sharing of layer n service
entity [€————-=-=---TToosSTosTTTT entity

by multiple layer n + 1 users.

52 CHAPTER2 Applications and Layered Architectures

datagram services of UDP. Each application layer process passes its SDU through its
socket to the UDP entity. UDP prepares a datagram that includes the source port number,
the destination port number, as well as the IP address of the source and destination
machines. The server-side port number is a well-known port number that unambiguously
identifies the process that is to receive the SDU at the server end. The client-side port
number is an ephemeral number that is selected when the socket for the application is
established. Demultiplexing can then be carried out unambiguously at each UDP entity
by directing an arriving SDU to the port number indicated in the datagram.

Splitting involves the use of several layer n services to support a single layer n + |
user. The SDUs from the single user are directed to one of several layer n entities, which
in turn transfer the given SDU to a peer entity at the destination end. Recombining
takes place at the destination where the SDUs recovered from each of the layer n entities
are passed to the layer n+ 1 user. Sequence numbers may be required to reorder the
received SDUSs.

Multiplexing is used to achieve more efficient use of communications services.
Multiplexing is also necessary when only a single connection is available between two
points. Splitting can be used to increase reliability in situations where the underlying
transfer mechanism is unreliable. Splitting is also useful when the transfer rate required
by the user is greater than the transfer rate available from individual services.

In closing we re-iterate: Similar needs occur at different layers and these can be
met by a common set of services such as those introduced here.

2.3 OVERVIEW OF TCP/IP ARCHITECTURE

The TCP/IP network architecture is a set of protocols that allows communication across
multiple diverse networks. The architecture evolved out of research that had the ori ginal
objective of transferring packets across three different packet networks: the ARPANET
packet-switching network, a packet radio network, and a packet satellite network. The
military orientation of the research placed a premium on robustness with regard to
failures in the network and on flexibility in operating over diverse networks. This envi-
ronment led to a set of protocols that are highly effective in enabling communications
among the many different types of computer systems and networks. Indeed, the Inter-
net has become the primary fabric for interconnecting the world’s computers. In this
section we introduce the TCP/IP network architecture. The details of specific protocols
that constitute the TCP/IP network architecture are discussed in later chapters.

2.3.1 TCP/IP Architecture

Figure 2.12a shows the TCP/IP network architecture, which consists of four layers.
The application layer provides services that can be used by other applications. For exam-
ple, protocols have been developed for remote login, for e-mail, for file transfer, and for
network management. The TCP/IP application layer incorporates the functions of the

2.3 Overview of TCP/IP Architecture 53

Anolicati Aoplicat FIGURE 2.12 TCP/IP network
p‘;al;:rlon p};a;:::mn architecture.
_Transport Transport
layer layer
Internet Internet
layer layer
Network Network
interface interface
(a) (b)
Machine A Machine B FIGURE 2.13 The internet
T layer and network interface layers.
Application Application
layer layer
Transport Transport
layer Router/gateway layer
Internet Internet Internet
layer layer layer
Network Network Network
interface interface interface
layer layer layer

@ Network 2

top three OSI layers. The HTTP protocol discussed in Section 2.1 is actually a TCP/IP
application layer protocol. Recall that the HTTP request message included format in-
formation and the HTTP protocol defined the dialogue between the client and server.

The TCP/IP application layer programs are intended to run directly over the trans-
port layer. Two basic types of services are offered in the transport layer. The first service
consists of reliable connection-oriented transfer of a byte stream, which is provided by
the Transmission Control Protocol (TCP). The second service consists of best-effort
connectionless transfer of individual messages, which is provided by the User Data-
gram Protocol (UDP). This service provides no mechanisms for error recovery or flow
control. UDP is used for applications that require quick but not necessarily reliable
delivery.

The TCP/IP model does not require strict layering, as shown in Figure 2.12b. In
other words, the application layer has the option of bypassing intermediate layers. For
example, an application layer may run directly over the internet layer.

The internet layer handles the transfer of information across multiple networks
through the use of gateways/routers, as shown in Figure 2.13. The internet layer

54 CHAPTER2 Applications and Layered Architectures

corresponds to the part of the OSI network layer that is concerned with the transfer of
packets between machines that are connected to different networks. It must therefore
deal with the routing of packets from router to router across these networks. A key
aspect of routing in the internet layer is the definition of globally unique addresses for
machines that are attached to the Internet. The internet layer provides a single service,
namely, best-effort connectionless packet transfer. IP packets are exchanged between
routers without a connection setup; the packets are routed independently, and so they
may traverse different paths. For this reason, IP packets are also called datagrams.
The connectionless approach makes the system robust; that is, if failures occur in the
network, the packets are routed around the points of failure; there is no need to set up
the connections again. The gateways that interconnect the intermediate networks may
discard packets when congestion occurs. The responsibility for recovery from these
losses is passed on to the transport layer.

Finally, the network interface layer is concerned with the network-specific aspects
of the transfer of packets. As such, it must deal with part of the OSI network layer and
data link layer. Various interfaces are available for connecting end computer systems to
specific networks such as ATM, frame relay, Ethernet, and token ring. These networks
are described in later chapters.

The network interface layer is particularly concerned with the protocols that access
the intermediate networks. At each gateway the network access protocol encapsulates
the IP packet into a packet or frame of the underlying network or link. The IP packet
1s recovered at the exit gateway of the given network. This gateway must then encap-
sulate the IP packet into a packet or frame of the type of the next network or link. This
approach provides a clear separation of the internet layer from the technology-dependent
network interface layer. This approach also allows the internet layer to provide a data
transfer service that is transparent in the sense of not depending on the details of the
underlying networks. The next section provides a detailed examplie of how IP operates
over the underlying networks.

Figure 2.14 shows some of the protocols of the TCP/IP protocol suite. The figure
shows two of the many protocols that operate over TCP, namely, HTTP and SMTP.

[wre] [smre | [ows | [me | FIGURE214 TCP/IP protocol
graph.

\

Network Network Network
interface 1 interface 2 interface 3

Srinivas inctitute of Technoiog
-

Acc. Nu. ... 39 LL

Call No. ‘ 2.3 Qverview of TCP/IP Architecture 55

The figure also shows DNS and Real-Time Protocol (RTP), which operate over UDP.
The transport layer protocols TCP and UDP. on the other hand. operate over IP. Many
network interfaces are defined to support IP. The salient part of Figure 2.14 is that all
higher-layer protocols access the network interfaces through IP. This feature provides
the capability to operate over multiple networks. The IP protocol is complemented by
additional protocols (ICMP, IGMP, ARP, RARP) that are required to operate an internet.
These protocols are discussed in Chapter 8.

The hourglass shape of the TCP/IP protocol graph underscores the features that
make TCP/IP so powerful. The operation of the single IP protocol over various networks
provides independence from the underlying network technologies. The communication
services of TCP and UDP provide a network-independent platform on which applica-
tions can be developed. By allowing multiple network technologies to coexist, the
Internet is able to provide ubiquitous connectivity and to achieve enormous economies
of scale.

2.3.2 TCP/IP Protocol: How the Layers Work Together

We now provide a detailed example of how the layering concepts discussed in the
previous sections are put into practice in a typical TCP/IP network scenario. We show

» Examples of each of the layers.

+ How the layers interact across the interfaces between them.

« How the PDUs of a layer are built and what key information is in the header.
* The relationship between physical addresses and IP addresses.

 How an IP packet or datagram is routed across several networks.

We first consider a simplified example, and then we present an example showing PDUs
captured in a live network by a network protocol analyzer. These examples will complete
our goal of providing the big picture of networking. In the remainder of the book we
systematically examine the details of the various components and aspects of networks.

Consider the network configuration shown in Figure 2.15a. A server, a workstation,
and a router are connected to an Ethernet LAN, and a remote PC is connected to the
router through a point-to-point link. From the point of view of IP. the Ethernet LAN
and the point-to-point link constitute two different networks as shown in Figure 2.15b.

IP ADDRESSES AND PHYSICAL ADDRESSES

Each host in the Internet is identified by a globally unique IP address. Strictly speaking,
the IP address identifies the host’s network interface rather than the host itself. A node
that is attached to two or more physical networks is called a router. In this example the
router attaches to two networks with each network interface assigned to a unique
IP address. An IP address is divided into two parts: a network id and a host id. The
network id must be obtained from an organization authorized to issue IP addresses. In
this example we use simplified notation and assume that the Ethernet has net id 1 and
that the point-to-point link has a net id 2. In the Ethernet we suppose that the server has
IP address (1.1), the workstation has IP address (1,2), and the router has ~idress (1,3).
In the point-to-point link, the PC has address (2.2), and the router has address (2,1).

56 CHAPTER2 Applications and Layered Architectures

(a) Server

Router

(1,3)

Ethernet W
Workstation
(b) Server PC
HTTP HTTP
TCP TCP
- Router
P 1P P
Network Network Network
interface interface interface

Ethernet °

FIGURE 2.15 An example of an internet consisting of an Ethernet
LAN and a point-to-point link: (a) physical configuration view and
(b) IP network view.

OnaLAN the attachment of a device to the network is often identified by a physical
address. The format of the physical address depends on the particular type of network.
For example, Ethernet I.ANs use 48-bit addresses. Each Ethernet network interface card
(NIC) is issued a globally unique medium access control (MAC) or physical address.
When a NIC is used to connect a machine to any Ethernet LAN, all machines in the
LAN are automatically guaranteed to have unique addresses. Thus the router, server,
and workstation also have physical addresses designated by r, s, and w, respectively.

SENDING AND RECEIVING IP DATAGRAMS

First, let us consider the case in which the workstation wants to send an IP datagram to
the server. The IP datagram has the workstation’s IP address and the server’s IP address
in the IP packet header. We suppose that the IP address of the server is known. The IP
entity in the workstation looks at its routing table to see whether it has an entry for the

2.3 Overview of TCP/IP Architecture 57

1P
header
Header contains Frame
source and destination | Ethernet
hysical addresses. head check
physical addresscs, er sequence

network protocol type

FIGURE 2.16 P datagram is encapsulated in an Ethernet frame.

complete IP address. It finds that the server is directly connected to the same network
and that the server has physical address 5.% The IP datagram is passed to the Ethernet
device driver, which prepares an Ethernet frame as shown in Figure 2.16. The header in
the frame contains the source physical address, w, and the destination physical address,
s. The header also contains a protocol type field that is set to the value that corresponds
to IP. The type field is required because the Ethernet may be carrying packets for other
non-IP protocols. The Ethernet frame is then broadcast over the LAN. The server’s NIC
recognizes that the frame is intended for its host, so the card captures the frame and
examines it. The NIC finds that the protocol type field is set to IP and therefore passes
the IP datagram up to the IP entity.

Next let us consider the case in which the server wants to send an IP datagram to
the personal computer. The PC is connected to the router through a point-to-point link
that we assume is running PPP as the data link control.” We suppose that the server
knows the IP address of the PC and that the IP addresses on either side of the link were
negotiated when the link was set up. The IP entity in the server looks at its routing
table to see whether it has an entry for the complete IP address of the PC. We suppose
that it doesn’t. The IP entity then checks to see whether it has a routing table entry that
matches the network id portion of the IP portion of the IP address of the PC. Again we
suppose that the IP entity does not find such an entry. The IP entity then checks to see
whether it has an entry that specifies a default router that is to be used when no other
entries are found. We suppose that such an entry exists and that it specifies the router
with address (1,3). _

The IP datagram is passed to the Ethernet device driver, which prepares an
Ethernet frame. The header in the frame contains the source physical address, s, and the
destination physical address, r. However, the IP datagram in the frame contains the des-
tination IP address of the PC, (2.2), not the destination IP address of the router. The
Ethernet frame is then broadcast over the LAN. The router’s NIC captures the frame
and examines it. The card passes the P datagram up to its IP entity, which discovers
that the IP datagram is not for itself but is to be routed on.

®If the IP entity does not know the physical address corresponding to the 1P address of the server, the entity
uses the Address Resolution Protocol (ARP) to find it. ARP is discussed in Chapter 8.
TPPP is discussed in Chapter 5.

58 CHAPTER 2 Applications and Layered Architectures

The routing tables at the router show that the machine with address (2,2) is con-
nected directly on the other side of the point-to-point link. The router encapsulates
the IP datagram in a PPP frame that is similar to that of the Ethernet frame shown in
Figure 2.16. However, the frame does not require physical address information, since
there is only one “other side” of the link. The PPP receiver at the PC receives the frame,
checks the protocol type field, and passes the IP datagram to its IP entity.

HOW THE LAYERS WORK TOGETHER

The preceding discussion shows how IP datagrams are sent across an internet. Next
let’s complete the picture by seeing how things work at the higher layers. Consider the
browser application discussed in the beginning of the chapter. We suppose that the user
at the PC has clicked on a web link of a document contained in the server and that a
TCP connection has already been established between the PC and the server.® Consider
what happens when the TCP connection is confirmed at the PC. The HTTP request
message GET is passed to the TCP layer, which encapsulates the message into a TCP
segment as shown in Figure 2.17. The TCP segment contains an ephemeral port number
for the client process, say, ¢, and a well-known port number for the server process, 80
for HTTP.

The TCP segment is passed to the IP layer, which in turn encapsulates the segment
into an Internet packet. The IP packet header contains the IP addresses of the sender,
(2,2), and the destination, (1,1). The header also contains a protocol field, which des-
ignates the layer that is operating above IP, in this case TCP. The IP datagram is then
encapsulated using PPP and sent to the router, which routes the datagram to the server
using the procedures discussed above. Note that the router encapsulates the [P datagram
for the server in an Ethernet frame.

Eventually the server NIC captures the Ethernet frame and extracts the IP datagram
and passes it to the IP entity. The protocol field in the IP header indicates that a TCP
segment is to be extracted and passed on to the TCP layer. The TCP layer, in turn,
uses the port number to find out that the message is to be passed to the HTTP server
process. A problem arises at this point: The server process is likely to be simultaneously
handling multiple connections to multiple clients. All these connections have the same
destination IP address; the same destination port number, 80; and the same protocol
type, TCP. How does the server know which connection the message corresponds to?
The answer is in how an end-to-end process-to-process connection is specified.

The source port number, the source IP address, and the protocol type are said to
define the sender’s socket address. Similarly, the destination port number, the destina-
tion IP address, and the protocol type define the destination’s socket address. Together
the source socket address and the destination socket address uniquely specify the con-
nection between the HTTP client process and the HTTP server process. For example,
in the earlier HTTP example the sender’s socket is (TCP, (2,2), ¢), and the destination’s
socket 1s (TCP, (1,1), 80). The combination of these five parameters (TCP, (2,2), ¢,
(1,1), 80) uniquely specify the process-to-process connection.

8The details of how a TCP connection is set up are described in Chapter 8.

2.3 Overview of TCP/IP Architecture 59

HTTP request

l

Header contains
source and destination
port numbers

TCP
: header

Header contains
source and destination P

IP addresses: header
transport protocol type *

Header contains -
source and destination | Ethernet .
physical addresses; | header

network protocol type “

FIGURE 2.17 Encapsulation of PDUs in TCP/IP and addressing information in
the headers. (Ethernet header is replaced with PPP header on a PPP link.)

VIEWING THE LAYERS USING A NETWORK PROTOCOL ANALYZER

A network protocol analyzer is a tool that can capture, display, and analyze the PDUs
that are exchanged between peer processes. Protocol analyzers are extremely useful in
troubleshooting network problems and also as an educational tool. Network protocol
analyzers are discussed in the last section of this chapter. In our examples we will use
the Ethereal open source package. In this section we use a sequence of captured packets
to show how the layers work together in a simple web interaction.

Figure 2.18 shows the Ethereal display after capturing packets that are transmitted
after clicking on the URL of the New York Times. The top pane in the display shows
the first eight packets that are transmitted during the interaction:

1. The first packet carries a DNS query from the machine with IP address
128.100.100.13 for the IP address of www.nytimes.com. It can be seen from the

first packet that the IP address of the local DNS server is 128.100.100.128. The sec-
ond packet carries the DNS response that provides three IP addresses, 64.15.347.200,
64.15.347.245, and 64.94.185.200 for the URL.

2. The next three packets correspond to the three-way handshake that is used to estab-
lish a TCP connection between the client and the server.” In the first packet the client
(with IP address 128.100.100.128 and port address 1127) makes a TCP connection
setup request by sending an IP packet to 64.15.347.200 and well-known port number
80. In the first packet, the client also includes an initial sequence number to keep

9TCP is discussed in detail in Chapter 8.

60 CHAPTER2 Applications and Layered Architectures

A nytimespackets - Ethereal ; i N A i xi
File Edt Capture Display Tools H5091

Destination
¥

L247.200 A 54.15.247.245 A 64.094.185.200
=3638689752 ack=0 win=16384 Len=0

2 0.

3 0.131%24 128.100.11.13 €4.15.247. 200 C

4 0.168286 64.15.247.200 128.106.11.1%2 TP

5 0.168320 128.100.11.13 64.15.247.200 TCP H

6 0.168688 128.100.11.13 64,15.247.200 HTTP / HTTP/1.

7 0.205439 64.15.247.200 128.100.11.13 TR 30 > 1127 [ACK] Seg=1396200326 Ack=3638690402 win=32767 Len=0
B8 0.236676 64.15.247.200 128.100.11.13 HTTP HTTP/1.1 200 K

BmFrame 1 (75 bytes on wire, 75 bytes captu-ed) K
@ ethernet II, Src: 00:90:27:96:b8:07, C0120:52:ea:b5:00
@ Internet Protocol, Sr¢ Addr: 128.100.

@ User Datagram Pr 1

& (ara i Fami:

1260, DST Part: 53 (53

H
=) T
0010 ¢ 1 E X
0020
0030 W
0040

7

Filter “ _/I Reset| App\,’”@umam Name Serice (dns), 33 bytes

FIGURE 2.18 Viewing packet exchanges and protocol layers using Ethereal: the display has
three panes (from top to bottom): packet capture list, details of selected packet, and data from
the selected packet.

count of the bytes it transmits. In the second packet the server acknowledges the con-
nection request and proposes its own initial sequence number. With the third packet,
the client confirms the TCP connection setup and the initial sequence numbers. The
TCP connection is now ready.

3. The sixth packet carries the HTTP “GET" request from the client to the server.

4. The seventh packet carries an acknowledgment message that is part of the
TCP protocol.

5. The final packet carries the HTTP status response from the server. The response code
200 confirms that the request was successful and that the document will follow.

The process of encapsulation (see Figure 2.17) means that a given captured frame
carries information from multiple layers. Figure 2.18 illustrates this point quite clearly.
The middle pane displays information about the highlighted packet (a DNS query) of
the top pane. By looking down the list in the middle pane. one can see the protocol
stack that the DNS query traversed, UDP over IP over Ethernet.

Figure 2.19 provides more information about the same DNS packet (obtained by
clicking on the “+" to the left of the desired entry in the middle pane). In the figure the
UDP and DNS entries have been expanded. In the UDP entry, it can be seen that the first
packet carries source port number 1126 and well-known destination port number 53. The
DNS entry shows the contents of the DNS query. Finally the third pane in Figure 2.19

2.3 Overview of TCP/IP Architecture 61

¢ nytimespackets - 1 therral

L %
Eh Edit Captwe Display Tools Ha!p!

Destination Protocol |Info

R N TR Ttatibarid Quer i e, T
129976 128.100.100.128 ONS Standard query resp

2 0. .200 A 64.15.247.245 A 64.94.185.200
3 0.131524 128.100.11.13 64.15.247.200 TCR 1127 > 80 {SYN] Seq=3638689752 Acke(wins16384 Len=0

4 0.168286 64.15.247.200 128.100.11.13 TCR 80 > 1127 [SYN, ACK] 5€q=1396200325 Ack=3638689753 win=1460 Len=G

5 0.168320 128.100,11.13 64.15.247.200 TCP 1127 > 80 [ACK] Seq=3638689753 Ack=1396200326 win«17316 Len=0

6 0.168688 128.100.11.13 64.15.247.200 HTTP GET / MTTP/1.1

7 0.205430 H4.15.247.200 128.100.11.13 TCP 80 > 1127 [acK] $eqm1396200326 ACk=3638650402 win=32767 Len=0

8 0.236676 64,15.247.200 128.100.11.13 HITP HTTP/1.1 200 0K

RTINS
128.100.11.13

B Frame 1 (75 bytes on wire, 75 bytes captured) £
BEthernet I, Src: 00:90:27:96:b8:07, 0sT: 00:00:52:ea:b5:00
B Internet Protocol, Src Addr: 128.100.11.13 (128.100.11.13), Dst addr: 128.100.100.128 (128.100.100.128)
Buser Datagram Protocol, Src Port: 1126 (1i26), ©Ost Port: domain (53)

Source port: 1126 (1126)

oestination port: domain (53)

Length: 41

Checksum: 0x4983 (correct)

Transaction 10: 0x00a%
€1FTags: 0x0100 (Standard guery)
Go.. vivv «uu. v... = RESpOnse: Message 1s a guery
. = Opcade: Standard query (0)
. = Truncated: Message is not truncated
. = Recursion desired: Do query recursively
.......... 0 = Non-authenticated data Ok: Non-authenticated data 1s unacceptable
Questions: 1
Answer RRs: O
Authority RRs: O
Additional RRs: 0
BQueries
B www.nytimes.com: type A, class {iner
Name: www.nytimes.com

Type: HOst address
Class: inet

—
0010 00 3d 54 41 00 00 80 11 76 19 B0 64 Db 0d B0 €4 .=Ta.... v..d...d [y
0020 64 50 04 66 00 35 00 29 45 83 MVNECHNRRNNNINNNY o..f.5.) I.

0030 [N = © S

Fﬂter,“ _d Rasetl Apply 5omam Name Service (dns), 33 bytes

FIGURE 2.19 More detailed protocol layer information for selected captured packet.

shows the actual raw data of the captured packet. The highlighted data in the third pane
corresponds to the ficlds that are highlighted in the middle pane. Thus the highlighted
area in the figure contains the data relating to the DNS PDU. From the third line in the
middle pane we can see the source and destination IP addresses of the IP datagram that
carries the given UDP packet. The second line shows the Ethernet physical addresses of
this frame that carries the given UDP packet. By expanding the IP and Ethernet entries
we can obtain the details of the IP datagram and the Ethernet frame. We will explore
the details of these and other protocols in the remainder of the book.

2.3.3 Protocol Overview

This completes the discussion on how the different layers work together in a TCP/IP
Internet. In the remaining chapters we examine the details of the operation of the
various layers. In Chapters 3 and 4 we consider various aspects of physical layers. In
Chapter 5 we discuss peer-to-peer protocols that allow protocols such as TCP to provide
reliable service. We also discuss data link control protocols. In Chapter 6 we discuss
LANs and their medium access controls. In Chapter 7 we return to the network layer
and examine the operation of routers and packet switches as well as issues relating to
addressing, routing, and congestion control. Chapter 8 presents a detailed discussion of
the TCP and IP protocols. In Chapter 9 we introduce ATM, a connection-oriented packet

62 CHAPTER2 Applications and Layered Architectures

network architecture. In Chapter 10 we discuss advanced topics, such as connection-
oriented IP networks realized through MPLS, new developments in TCP/IP architecture
and the support of real-time multimedia services over IP. In Chapter 11 we introduce
enhancements to IP that provide security. From time to time it may be worthwhile to
return to this example to place the discussion of details in the subsequent chapters into
the big picture presented here.

2.4 THE BERKELEY API"

An Application Programming Interface (API) allows application programs (such as
Telnet, web browsers, etc.) to access certain resources through a predefined and prefer-
ably consistent interface. One of the most popular of the APIs that provide access to
network resources is the Berkeley socket interface, which was developed by a group
at the University of California at Berkeley in the early 1980s. The socket interface
is now widely available on many UNIX machines. Another popular socket interface,
which was derived from the Berkeley socket interface, is called the Windows sockets
or Winsock and was designed to operate in a Microsoft® Windows environment.

By hiding the details of the underlying communication technologies as much as pos-
sible, the socket mechanism allows programmers to write application programs easily
without worrying about the underlying networking details. Figure 2.20 shows how two
applications talk to each other across a communication network through the socket
interface. In a typical communication session, one application operates as a server and
the other as a client. The server is the provider of a particular service while the client is
the consumer. A server waits passively most of the time until a client requires a service.

This section explains how the socket mechanism can provide services to the appli-
cations. Two modes of services are available through the socket interface: connection-
oriented and connectionless. With the connection-oriented mode, an application must
first establish a connection to the other end before the actual communication (i.e., data
transfer) can take place. The connection is established if the other end agrees to accept
the connection. Once the connection is established, data will be delivered through the
connection to the destination in sequence. The connection-oriented mode provides a
reliable delivery service. With the connectionless mode an application sends its data im-
mediately without waiting for the connection to get established at all. This mode avoids
the setup overhead found in the connection-oriented mode. However, the price to pay
is that an application may waste its time sending data when the other end is not ready to
accept it. Moreover, data may not arrive at the other end if the network decides to discard
it. Worse yet, even if data arrives at the destination, it may not arrive in the same order as
it was transmitted. The connectionless mode is said to provide best-effort service, since
the network would try its best to deliver the information but cannot guarantee delivery.

Figure 2.21 shows a typical diagram of the sequence of socket calls for the
connection-oriented mode. The server begins by carrying out a passive open as

10This section is optional and is not required for later sections. A knowledge of C programming is assumed.

Application 1

Socket)
interface : User
Kemel
Y
Socket

Communication
network

2.4 The Berkeley API

Application 2
1 Socket
User : interface
Kernel
Yy
Socket
A

FIGURE 2.20 Communications through the socket interface.

Server

Blocks until server receives Connect
a connect request from client negotiation

Client

[socket () |

connect ()

read()

63

FIGURE 2.21 Socket calls for

connection-oriented mode.

64 CHAPTER 2 Applications and Layered Architectures

Server FIGURE 2.22 Socket calls for

connectionless mode.
socket ()

Client

Blocks until server receives
data from client Data

socket ()

sendto(recvfrom()

follows. The socket call creates a TCP socket. The bind call then binds the well-
known port number of the server to the socket. The 1isten call turns the socket into a
listening socket that can accept incoming connections from clients. Finally, the accept
call puts the server process to sleep until the arrival of a client connection request. The
client does an active open. The socket call creates a socket on the client side, and the
connect call attempts to establish the TCP connection to the server with the specified
destination socket address. When the TCP connection is established, the accept func-
tion at the server wakes up and returns the descriptor for the given connection, namely,
the source IP address, source port number, destination IP address, and destination port
number. The client and server are now ready to exchange information.

Figure 2.22 shows the sequence of socket calls for the connectionless mode. Note
that no connection is established prior to data transfer. The recvfrom call returns when
a complete UDP datagram has been received. For both types of communication, the
data transfer phase may occur in an arbitrary number of exchanges.

2.4.1 Socket System Calls

Socket facilities are provided to programmers through C system calls that are simi-
lar to function calls except that control is transferred to the operating system kernel
once a call is entered. To use these facilities, the header files <sys/types.h> and-
<sys/socket .h> must be included in the program.

CREATING A SOCKET

Before an application program (client or server) can transfer any data, it must first create
an endpoint for communication by calling socket. Its prototype is

int socket (int family, int type, int protocol);

2.4 The Berkeley API 65

where fami ly identifies the family by address or protocol. The address family identifies
a collection of protocols with the same address format, while the protocol family
identifies a collection of protocols having the same architecture. Although it may be
possible to classify the family based on addresses or protocols, these two families
are currently equivalent. Some examples of the address family that are defined in
<sys/socket .h> include AF_UNIX, which is used for communication on the local
UNIX machine, and AF_INET, which is used for Internet communication using TCP/IP
protocols. The protocol family is identified by the prefix pr_. The value of PF_xxx
is equal to that of AF_xxx, indicating that the two families are equivalent. We are
concerned only with AF_INET in this book.

The type identifies the semantics of communication. Some of the types include
SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW. A SOCK_STREAM type provides data de-
livery service as a sequence of bytes and does not preserve message boundaries. A
SOCK_DGRAM type provides data delivery service in blocks of bytes called datagrams.
A SOCK_RAW type provides access to internal network interfaces and is available only
to superuser.

The protocol identifies the specific protocol to be used. Normally, only one pro-
tocol is available for each family and type, so the value for the protocol argu-
ment is usually set to O to indicate the default protocol. The default protocol of
SOCK_STREAM type with AF_INET family is TCP, which is a connection-oriented pro-
tocol providing a reliable service with in-sequence data delivery. The default protocol
of SOCK_DGRAM type with AF_INET family is UDP, which is a connectionless protocol
with unreliable service.

The socket call returns a nonnegative integer value called the socket descriptor or
handle (just like a file descriptor) on success. On failure, socket returns —1.

ASSIGNING AN ADDRESS TO THE SOCKET

After a socket is created, the bind system call can be used to assign an address to the
socket. Its prototype is

int bind(int sd, struct sockaddr *name, int namelen);

where sd is the socket descriptor returned by the socket call, name is a pointer to an
address structure that contains the local IP address and port number, and namelen is
the size of the address structure in bytes. The bind system call returns 0 on success
and —1 on failure. The sockaddr structure is a generic address structure and has the
following definition:

struct sockaddr {
u_short sa_family; /* address family */
char sa_data(l14]; /* address */

}:

where sa_fami 1y holds the address family and sa_data holds up to 14 bytes of address
information that varies from one family to another. For the Internet family the address
information consists of the port number that is two bytes long and an IP address that

66 CHAPTER2 Applications and Layered Architectures

is four bytes long. The appropriate structures to use for the Internet family are defined
in <netinet/in.h>:

struct in addr ({

u_long s_addr; /* 32-bit IP address */
}:
struct sockaddr_in {

u_short sin_family; /* AF_INET */

u_short sin_port; /* TCP or UDP port */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero(8]; /* unused */

};

An application program using the Internet family should use the sockaddr_in
structure to assign member values and should use the sockaddr structure only for
casting purposes in function arguments. For this family sin_family holds the value of
the identifier AF_INET. The structure member sin_port holds the local port number.
Port numbers 1 to 1023 are normally reserved for system use. For a server, sin_port
contains a well-known port number that clients must know in advance to establish a
connection. Specifying a port number O to bind asks the system to assign an available
port number. The structure member sin_addr holds the local IP address. For a host
with multiple IP addresses, sin_addr is typically set to INADDR_ANY to indicate that
the server is willing to accept communication through any of its IP addresses. This
setting is useful for a host with multiple IP addresses. The structure member sin_zero
is used to fill out st ruct sockaddr_in to 16 bytes.

Different computers may store a multibyte word in different orders. If the least
significant byte is stored first (has lower address), it is known as little endian. If the
most significant byte is stored first, it is known as big endian. For any two computers to
be able to communicate, they must agree on a common data format while transferring
multibyte words. The Internet adopts the big-endian format. This representation is
known as network byte order in contrast to the representation adopted by the host,
which is called host byte order. It is important to remember that the values of sin_port
and sin_addr must be in the network byte order, since these values are communicated
across the network. Four functions are available to convert between the host and network
byte order conveniently. Functions htons and htonl convert an unsigned short and an
unsigned long, respectively, from the host to network byte order. Functions ntohs and
ntohl convert an unsigned short and an unsigned long, respectively, from the network to
host byte order. We need to use these functions so that programs will be portable to any
machine. To use these functions, we should include the header files <sys/types.h>
and <netinet/in.h>. The appropriate prototypes are

u_long htonl (u_long hostlong);
u_short htons(u_short hostshort);
u_long ntohl(u_long netlong);
u_short ntohs (u_short netshort);

ESTABLISHING AND ACCEPTING CONNECTIONS
A client establishes a connection on a socket by calling connect. The prototype is

int connect (int sd, struct sockaddr *name, int namelen);

2.4 The Berkeley API 67

where sd is the socket descriptor returned by the socket call, name points to the server
address structure, and namelen specifies the amount of space in bytes pointed to by
name. For the connection-oriented mode, connect attempts to establish a connection
between a client and a server. For the connectionless mode, connect stores the server’s
address so that the client can use a mode socket descriptor when sending datagrams,
instead of specifying the server’s address each time a datagram is sent. The connect
system call returns O on success and —1 on failure.

A connection-oriented server indicates its willingness to receive connection re-
quests by calling 1isten. The prototype is

int listen(int sd. int backlog);

where sd is the socket descriptor returned by the socket call and backlog specifies
the maximum number of connection requests that the system should queue while it
waits for the server to accept them (the maximum value is usually 5). This mechanism
allows pending connection requests to be saved while the server is busy processing
other tasks. The 1isten system call returns O on success and —1 on failure.

After a server calls 1isten, it can accept the connection request by calling accept
with the prototype

int accept (int sd, struct sockaddr *addr, int *addrlen);

where sd is the socket descriptor returned by the socket call, addr is a pointer to an
address structure that accept fills in with the client’s IP address and port number, and
addrlen is a pointer to an integer specifying the amount of space pointed to by addr
before the call. On return, the value pointed to by addrlen specifies the number of
bytes of the client address information.

If no connection requests are pending, accept will block the caller until a con-
nection request arrives. The accept system call returns a new socket descriptor having
nonnegative value on success and — 1 on failure. The new socket descriptor inherits the
properties of sd. The server uses the new socket descriptor to perform data transfer for
the new connection. While data transfer occurs on an existing connection, a concurrent
server can accept further connection requests using the original socket descriptor sd,
allowing multiple clients to be served simultaneously.

TRANSMITTING AND RECEIVING DATA

Clients and servers may transmit data using write or sendto. The write callis usually
used for the connection-oriented mode. However, a connectionless client may also
call write if it has a connected socket (that is, the client has executed connect). On
the other hand, the sendto call is usually used for the connectionless mode. Their
prototypes are

int write(int sd, char *buf, int buflen);
int sendto(int sd, char *buf, int buflen, int flags,
struct sockaddr *addrp, int addrlen);

where sd is the socket descriptor, buf is a pointer to a buffer containing the data to
transmitted, buflen is the length of the data in bytes, f1ags can be used to contro}

68 CHAPTER2 Applications and Layered Architectures

transmission behavior such as handling out-of-band (high priority) data but is usually
set to 0 for normal operation, addrp is a pointer to the sockaddr structure containing
the address information of the remote hosts, and addrlen is the length of the address
information. Both write and sendto return the number of bytes transmitted on success
or —1 on failure.

The corresponding system calls to receive data read and recvfrom. Their proto-
types are

int read(int sd, char *buf, int buflen);
int recvfrom(int sd, char * buf, int buflen, int flags,
struct sockaddr *addrp, int *addrlen);

The parameters are similar to the ones discussed above except buf is now a pointer to
a buffer that is used to store the received data and buflen is the length of the buffer in
bytes. Both read and recvfrom return the number of bytes received on success or —1
on failure. Both calls will block if no data arrives at the local host.

CLOSING A CONNECTION
If a socket is no longer in use, the application can call close to terminate a connection
and return system resources to the operating system. The prototype is

int close(int sd);

- where sd is the socket descriptor to be closed. The close call returns 0 on success and
—1 on failure.

2.4.2 Network Utility Functions

Library routines are available to convert a human-friendly domain name such as
tesla.comm.utoronto.ca into a 32-bit machine-friendly IP as 10000000 01100100
00001011 00000001 and vice versa. To perform the conversion we should include
the header files <sys/socket .h>, <sys/types.h>, and <netdb.h>. The appropriate
structure that stores the host information defined in the <netdb.h> file is

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias name this host uses */
int h_addrtype; /* address type */

int h_length; /* length of address */

char **h_addr_1list; /* list of addresses from name

server */

}i

The h_name element points to the official name of the host. If the host has name
aliases, these aliases are pointed to by h_aliases, which is terminated by a NULL.
Thus h_aliases[0] points to the first alias, h_aliases[1] points to the second

2.4 The Berkeley API 69

alias, and so on. Currently, the h_addrtype element always takes on the value of
AF_INET, and the h_length element always contains a value of 4. The h_addr_1ist
points to the list of network addresses in network byte order and is terminated by a
NULL.

NAME-TO-ADDRESS CONVERSION FUNCTIONS

Two functions are used for routines performing a name-to-address-conversion:
gethostbyname and gethostbyaddr.

struct hostent *gethostbyname (char *name);

The function gethostbyname takes a domain name at the input and returns the host
information as a pointer to st ruct hostent. The function returns a NULL on error. The
parameter name is a pointer to a domain name of a host whose information we would
like to obtain. The function gethostbyname obtains the host information either from
the file /etc/hosts or from a name server. Recall that the host information includes
the desired address. :

struct hostent *gethostbyaddr (char *addr, int len, int type);

The function gethostbyaddr takes a host address at the input in network byte order,
its length in bytes, and type, which should be Ar_1NET. The function returns the same
information as get hostbyname. This information includes the desired host name.

The IP address is usually communicated by people using a notation called the
dotted-decimal notation. As an example, the dotted-decimal notation of the IP address
10000000 01100100 00001011 00000001 is 128.100.11.1. To convert between these
two formats, we could use the functions inet_addr and inet_ntoa. The header files
that must be included are <sys/types.h>, <sys/socket.h>, <netinet/in.h>, and
<arpa/inet.h>.

IP ADDRESS MANIPULATION FUNCTIONS
Two functions are used for routines converting addresses between a 32-bit format and
the dotted-decimal notation: inet_nota and inet_addr.

char *inet_ntoa(struct in_addr in);

The function inet_ntoa takes a 32-bit IP address in network byte order and returns
the corresponding address in dotted-decimal notation.

unsigned long inet_addr (char *cp);

The function inet_addr takes a host address in dotted-decimal notation and returns
the corresponding 32-bit IP address in network byte order.

70 CHAPTER 2 Applications and Layered Architectures

IDGWIJPNVE Communicating with TCP

As an illustration of the use of the system calls and functions described previously, let
us show two application programs that communicate via TCP. The client prompts a
user to type a line of text, sends it to the server, reads the data back from the server,
and prints it out. The server acts as a simple echo server. After responding to a client,
the server closes the connection and then waits for the next new connection. In this
example each application (client and server) expects a fixed number of bytes from the
other end, specified by BUFLEN. Because TCP is stream oriented, the received data may
come in multiple pieces of byte streams independent of how the data was sent at the
other end. For example, when a transmitter sends 100 bytes of data in a single write
call, the receiver may receive the data in two pieces—80 bytes and 20 bytes—or in
three pieces—10 bytes, 50 bytes, and 40 bytes—or in any other combination. Thus the
program has to make repeated calls to read until all the data has been received. The
following program is the server.

/* A simple echo server using TCP */
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define SERVER_TCP_PORT 3000 /* well-known port */
#define BUFLEN 256 /* buffer length */

int main(int argc, char **argv)

{

int n, bytes_to_read;

int sd, new_sd, client_len, port;
struct sockaddr_in server, client;
char *bp, buf [BUFLEN] ;

switch(argc) {

case 1:
port = SERVER_TCP_PORT;
break;

case 2:
port = atoi(argv(l]);
break;

default:
fprintf (stderr, "Usage: %s ([port]\n", argv(0]);
exit(1);

}

/* Create a stream socket */

if ((sd = socket (AF_INET, SOCK_STREAM, 0)) == -1) {
fprintf (stderr, "Can't create a socket\n");
exit(1l);

2.4 The Berkeley API 71

/* Bind an address to the socket */

‘bzero((char *)&server, sizeof (struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons{port);
server.sin_addr.s_addr = htonl (INADDR_ANY) ;
if (bind(sd, ({(struct sockaddr *)&server,

sizeof (server)) == -1) {
fprintf (stderr, "Can’t bind name to socket\n");
exit(1l);

/* queue up to 5 connect requests */
listen(sd, 5);

while (1) {
client_len = sizeof(client);
if ((new_sd = accept(sd, (struct sockaddr *)

&client, &client_len)) == -1) {
fprintf (stderr, "Can’t accept client\n"):;
exit (1);

}

bp = buf;

bytes_to_read = BUFLEN;

while ((n = read{new_sd, bp, bytes_to_read)) > 0) {
bp += n;
bytes_to_read -= n;

}

write(new_sd, buf, BUFLEN);
close (new_sd) ;

}

close(sd);

return(0) ;

}

The client program allows the user to identify the server by its domain name. Conversion
to the IP address is done by the gethostbyname function. Again, the client makes
repeated calls to read until no more data is expected to arrive. The following program
is the client.

/* A simple TCP client */
#include <stdio.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_TCP_PORT 3000
#define BUFLEN . 256 /* buffer length */

72 CHAPTER 2 Applications and Layered Architectures

int main(int argc, char **argv)

{
int n, bytes_to_read;
int sd, port;
struct - hostent *hp;
. struct sockaddr_in server;
char, *host, *bp, rbuf[BUFLEN], sbuf[BUFLEN];

switch(arge) {

case 2:
host = argv{i];
port = SERVER_TCP_PORT;
break;
case 3:
host = argv(l];
port = atoi(argvi2]);:
break;
default:
fprintf (stderr, "Usage: %s host[portl\n", argvi(0]):
exit(1);
}
/* Create a stream socket */
if ({(sd = socket (AF_INET, SOCK_STREAM, 0)) == -1) {
fprintf(stdgrr, "Can't create a socket\n");

exit (1),;
} PRt

bzero((char *)&server, sizeof (struct sockaddr_in)});
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((hp = gethostbyname(host))} == NULL) {
fprintf(stderr, ®"Can’t get server’s address\n");
exit(1l);
} ‘ :
beopy (hp->h_addr,. {(char *)&server.sin_addr,
hp~->h_length); L

/* Connecting to:the server */
if (connect(sd, {(struct sockaddr *)&server,
sizeof (server)) == -1) {
fprintf (stderr, "Can’t connect\n");
exit (1); ’
} ,
printf ("Connected: server's address is %s\n",
hp->h_nane}) ;

2.4 The Berkeley APl 73

prihtf(“Transmit:\n“):
gets (sbuf); /* get user's text */
write(sd, sbuf, BUFLEN); /* send it out */

printf("Receive:\n");

bp = rbuf;

bytes_to_read = BUFLEN;

while ((n = read (sd, bp, bytes_to_read)) > 0) {

bp += n;
bytes_to_read -= n;
}
printf("%$s\n", rbuf);
close(sd);
return(0);

The student is encouraged to verify the sequence of socket calls in the above client
and server programs with those shown in Figure 2.21. Further, the student may trace
the sequence of calls by inserting a print statement after each call and verify that the
accept call in the TCP server blocks until the connect call in the TCP client returns.

DGV IYBON Using the UDP Protocol

Let us now take a look at client/server programs using the UDP protocol. The following
source code is a program that uses the UDP server as an echo server as before. Note
that data receipt can be done in a single call with recvfrom, since UDP is-blocked
oriented. - :

/* Echo server using UDP *y
#include <stdio.h>

#include <sys/types.h>
ﬁinclude <gys/socket.h>
#include <netinet/in.h>

#define SERVER_UDP_PORT 5000 /* well-known port */
#define MAXLEN 4096 /* maximum data length */

int main(int argc, char **argv)

{
int sd, client_len, port, mn;
char buf [MAXLEN] ;
struct sockaddr_in server, client;

74 CHAPTER 2 Applications and Layered Architectures

switch(argc) {
case 1:
port = SERVER_UDP_PORT;
break;
case 2:
port = atoi(argv(l]l);:
break;
default:
fprintf (stderr, "Usage: %s [port]\n", argv[0]);
exit (1) ;

/* Create a datagram socket */

if ((sd = socket (AF_INET, SOCK_DGRAM, 0)) == -1) {
fprintf (stderr, "Can’'t create a socket\n");
exit(1l);

}

/* Bind an address to the socket */
bzero((char *)&server, sizeof (server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = htonl (INADDR_ANY) ;
if (bind{sd, (struct sockaddr *)&server,

sizeof (server)) == -1) {
fprintf (stderr, "Can’t bind name to socket\n");
exit (1) ;

}

while (1) {

client_len = sizeof(client);

if ((n = recvfrom(sd, buf, MAXLEN, O,

(struct sockaddr *)&client, &client_len)) < 0) {
fprintf (stderr, "Can’'t receive datagram\n");
exit(1l);

}

if (sendto(sd, buf, n, 0,

(struct sockaddr *)&client, client_len) != n) {
fprintf (stderr, "Can‘t send datagram\n");

exit (1);
} N
}

close(sd);

return(0); -
}
The following client program first constructs a simple message of a predetermined
length containing a string of characters a, b, c,..., z,a,b,c,..., z, ... The client then

gets the start time from the system using gett imeofday and sends the message to

2.4 The Berkeley APl 75

the echo server. After the message travels back, the client records the end time and
measures the difference that represents the round-trip latency between the client and
the server. The unit of time is recorded in milliseconds. This simple example shows
how we can use sockets to gather important network statistics such as latencies and
jitter.

/* A simple UDP client which measures round trip delay */
#include <stdio.h>

#include <string.h>

#include <sys/time.h>

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

4define SERVER_UDP_PORT 5000
#define MAXLEN 4096 /* maximum data length */
#define DEFLEN 64 /* default length */

long delay(struct timeval tl, struct timeval t2);
>
int main(int argc, char **argv)

{

int data_size = DEFLEN, port = SERVER_UDP_PORT;
int i, j, sd, server_len;

char *pname, *host, rbuf[MAXLEN], sbuf[MAXLEN];
struct hostent *hp;

struct sockaddr_in server;

struct timeval start, end;

pname = argv([0];

argc--;
argv++;
if (argc > 0 && (strcmp(*argv, "-s") == 0)) {
if (--argc > 0 && (data_size = atoi(*++argv))) {
argc--; :
argv++; .
}
else {

fprintf (stderr,
"Usage: %s [-s data_size] host [port]\n*,
pname) ;
exit(1l);
}
}
if (argc > 0) {
host = *argv;
if (--argc > 0)
port = atoi(*++argv);

76 CHAPTER 2 Applications and Layered Architectures

else {
fprintf (stderr,
“Usage: %s [-s data_size] host [port]\n", pname);
exit(l);

/* Create a datagram socket */

if ((sd = socket (AF_INET, SOCK_DGRAM, 0)) == -1) {
fprintf (stderr, "Can’'t create a socket\n");
exit (1) ;

}

/* Store server’s information */
bzero((char *)&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((hp = gethostbyname(host)) == NULL) {
fprintf(stderr, "Can’t get server's IP address\n");
exit(1l); :
} .
beopy (hp->h_addr, (char *)&server.sin_addr,
hp->h_length) ;
if (data_size > MAXLEN) {
fprintf (stderr, "Data is too big\n");
exit(l);
} o
/* data is a, b, ¢,..., z, a, b,... */
for (i = 0; i < data_size; i++) {
J=(i<26) 2i:1i% 26;
sbuf(il = 'a’ + j;
}

gettimeofday (&start, NULL); /* start delay measure *)
. ./* transmit data */

server_len = sizeof (server);
~+«if (sendto(sd, sbuf, data_size, 0, (struct sockaddr *)

~&server, server_len) == -1) {(
fprintf (stderr; "sendto error\n"); L

: Loexit(ly;

~ [/* receive data */ ;

 if (recvfrom(sd, rbuf, MAXLEN, 0, (struct sockaddr *)
&server, &server_len) < 0) { i
fprintf(stderr, "recvfrom error\n®);
exit(1l);

2.5 Application Layer Protocols and TCP/IP Utilities 77

gettimeofday (&end, NULL); /* end delay measure *po

printf ("Round-trip delay = %1d ms.\n",
delay (start, end)):

if (strncmp(sbuf, rbuf, data_size) != 0)
printf("Data is corrupted\n");

close(sd):
return{(0) ; i Cote
}
‘/* .
Compute the delay between tl and t2 in milliseconds
X/ : .
: long delay (struct timeval tl, struct timeval t2)

{ _
long &;

d = (t2.tv_sec - €l.tv_sec) * 1000;
A 4= {{t2.tv_usec - tl.tv_usec + 500) / 1000);
“return(d); - Y

It is important to remember that datagram communication using UDP is unreliable. If
the communication is restricted to a local area network environment, say within a
building, then datagram losses are extremely rare in practice, and the above client
program should work well. However, in a wide area network environment, datagrams
may be frequently discarded by the network. If the reply from the server does not
reach the client, the client will wait forever! In this situation, the client must provide
a timeout mechanism and retransmit the message. Also, further reliability may be
provided to reorder the datagram at the receiver and to ensure that duplicated datagrams
are discarded. '

4 2.5 APPLICATION LAYER PROTOCOLS
AND TCP/IP UTILITIES

Application layer protocols are high-level protocols that provide services to user appli-
cations. These protocols tend to be more visible to the user than other types of protocols.
Furthermore, application protocols may be user written, or they may be standardized
applications. Several standard application protocols form part of the TCP/IP protocol
suite, the more common ones being Telnet, File Transfer Protocol (FTP), HTTP, and
SMTP. Coverage of the various TCP/IP application layer protocols is beyond the scope
of this textbook. The student is referred to “Internet Official Protocol Standards,” which

78 CHAPTER 2 Applications and Layered Architectures

provides a list of Internet protocols and standards [RFC 3000]. In this section the focus
is on applications and utilities that can be used as tools to study the operation of the
Internet. We also introduce network protocol analyzers and explain the basics of packet
capture.

2.5.1 Telnet

Telnet is a TCP/IP protocol that provides a standardized means of accessing resources
on a remote machine where the initiating machine is treated as local to the remote host.
In many implementations Telnet can be used to connect to the port number of other
servers and to interact with them using a command line. For example. the HTTP and
SMTP examples in Section 2.1 were generated this way.

The Telnet protocol is based on the concept of a nerwork virtual terminal (NVT),
which is an imaginary device that represents a lowest common denominator terminal.
By basing the protocol on this interface, the client and server machines do not have to
obtain information about each other’s terminal characteristics. Instead, each machine
initially maps its characteristics to that of an NVT and negotiates options for changes
to the NVT or other enhancements, such as changing the character set.

The NVT acts as a character-based terminal with a keyboard and printer. Data input
by the client through the keyboard is sent to the server through the Telnet connection.
This data is echoed back by the server to the client’s printer. Other incoming data from
the server is also printed.

Telnet commands use the seven-bit U.S. variant of the ASCII character set. A
command consists minimally of a two-byte sequence: the Interpret as Command (IAC)
escape character followed by the command code. If the command pertains to option
negotiation, that is, one of WILL, WONT, DO. or DONT. then a third byte contains
the option code. Table 2.4 lists the Telnet command names, their corresponding ASCII
code, and their meaning. '

A substantial number of Telnet options can be negotiated. Option negotiations
begin once the connection is established and may occur at any time while connected.
Negotiation is symmetric in the sense that either side can initiate a negotiation. A nego-
tiation syntax is defined in RFC 854 to prevent acknowledgment loops from occurring.

Telnet uses one TCP connection. Because a TCP connection is identified by a pair
of port numbers, a server is capable of supporting more than one Telnet connection at a
time. Once the connection is established, the default is for the user. that is, the initiator
of the connection. to enter a login name and password. By default the password is sent
as clear text, although more recent versions of Telnet offer an authentication option.

2.5.2 File Transfer Protocol

File Transfer Protocol (FTP) is another commonly used application protocol. FTP
provides for the transfer of a file from one machine to another. Like Telnet, FTP
is intended to operate across different hosts, even when they are running different
operating systems or have ditferent file structures.

